
Sen4Smells: A Tool for Ranking Sensitive Smells
for an Architecture Debt Index

J. Andres Diaz-Pace∗, Antonela Tommasel∗, Ilaria Pigazzini‡ and Francesca Arcelli Fontana‡
∗ISISTAN, CONICET, UNICEN University, Argentina {andres.diazpace,antonela.tommasel}@isistan.unicen.edu.ar,

‡Department of Informatics, Systems and Communication, Milano-Bicocca University {ilaria.pigazzini,francesca.arcelli}@unimib.it

Abstract—Technical debt indexes are metrics for assessing the
quality of a software system. Both academic and commercial tools
have begun to provide computations of such indexes based on
design violations and smells (e.g., cycles among system elements).
When computing a debt index for a given project, a common
use case is that engineers look at the index values for spotting
design issues that negatively affect system evolution and quality.
In this context, those smells being critical for the system archi-
tecture should be promptly identified so as to evaluate proper
remediation actions. However, the interpretation of an index value
in terms of problematic smells is usually a manual and labor-
intensive task for engineers. To help with this task, we propose
a tool called Sen4Smells that performs an automated sensitivity
analysis for a given debt index based on the evolution of both the
index values and the corresponding smells across (past) system
versions. The Sen4Smells output is a ranking of smells that, due to
their variations or instability, are major contributors to the debt
index, and thus, can impact on architecture quality. Sen4Smells is
designed as a pipeline that combines information from existing
tools for smell detection, predefined debt index formulas, and
the Sobol method for sensitivity analysis. As a demonstration of
the tool functionality, we briefly present implementations for the
Arcan and Sonargraph tools with their respective debt indexes.

Index Terms—tool support, architectural smells, debt index,
sensitivity analysis, system evolution

I. INTRODUCTION

The quality of a software system can be evaluated by
considering the technical debt accumulated in the system [9].
To this end, several tools support the computation of debt
indexes, such as: Sonargraph, CAST, Arcan, and SonarQube,
among others [1]. Having a debt index (DI) is useful to
provide engineers with a quality indicator of the overall system
health. Yet more importantly, a DI should also assist engineers
to identify sub-optimal parts of the system that could be
improved (e.g., via refactoring). Recent works [2, 23] have
argued for the need of taking architectural issues into account
in debt indexes, and focused on the analysis of architectural
smells [7]. In this view, an architectural smell (AS) indicates a
violation of key design principles or decisions that might lead
to high maintenance and evolution costs [5]. Thus, smells are
regarded as an important source of technical debt.

In practice, once engineers have chosen a DI and applied
it to their project, a relevant aspect for them is the “inter-
pretation” of the index values [15]. By interpretation, we
refer to the ability of examining the index values in order

to spot those system elements that are the main contributors
to the current design problems. This task involves looking
at system elements with different granularity (e.g., packages,
classes, or smells), and also considering the history of a
system element (e.g., the evolution of a smell across a range
of system versions). Common questions posed by engineers
include: (i) which packages are the most sensitivity ones for
the current architecture health?, or (ii) which smells have
suffered instabilities in the past system versions that might
compromise the design in future versions? As a result, the ASs
or packages being sensitive for the system architecture should
be brought to the developer’s attention, due to their impact on
system evolution. Unfortunately, the examination of DI values
in terms of ASs or packages is often a cumbersome and time-
consuming task for engineers. In addition, the instabilities in
ASs cannot be simply detected by means of a static analysis
tool that identifies the smells in the current system version
(e.g., JDeodorant, or SonarQube); rather, the evolution history
of those ASs need to be taken into account.

In this context, we propose a tool called Sen4Smells that
performs an automated sensitivity analysis (SA) for a col-
lection of system values provided by a predetermined DI.
These values are linked to system elements, such as ASs or
packages. Our approach relies on two building blocks: (i)
the adaptation of an existing SA method to DIs based on
ASs, and (ii) a strategy for decomposing the DI of choice
according to different levels. At the lowest level, we leverage
on ASs and DI metrics for those smells (e.g., number of
incoming dependencies of a smell). The goal is to assess
how DI variations can be attributed to variations in metrics of
system elements [3]. To do so, the tool performs a screening
of the various system elements affecting the index over time,
and returns a ranking with the most sensitive ones to the tool
user. The inputs for this analysis are: a list of previous system
versions, the formula for computing a particular DI, and the
desired granularity of system elements. Sen4Smells is designed
as a pipeline, in which existing modules for detecting AS and
computing metrics from the software system can be wrapped,
and configured based on the selected DI.

The main contribution of this tool is the assistance for engin-
eers to interpret system-level DI values in terms of problematic
ASs and packages, as indicators of system quality trends. We
are not developing a new SA technique, but rather selecting
a suitable one and adapting it to our index interpretation
problem. To evaluate the Sen4Smells functionality, we have978-1-7281-5957-7/20/$31.00 ©2020 IEEE

instantiated the pipeline with two indexes: ADI (Architecture
Debt Index) and SDI (Structural Debt Index). The first index
is supported by the Arcan academic tool [17], which also
provides a static analyzer for detecting three AS types in
Java systems. The second index is provided by the Sonargraph
commercial tool1, which computes cycles and metrics on Java
systems. The SA is currently implemented via the well-known
Sobol method [18]. Other DI formulas, smell analyzers, or
alternative SA methods, can be easily integrated into the
pipeline. The rest of the paper is structured as follows. Section
2 analyzes related work. In Section 3, we describe both the
design of the tool pipeline and details of how the SA is
performed. Section 4 presents the integration of Sen4Smells
with Arcan and Sonargraph, and also reports on preliminary
results of applying the tool to three systems. Finally, Section
5 presents the conclusions and outlines future work.

II. RELATED WORK

Several works in the literature have discussed the manage-
ment of TD at different levels (e.g., architecture, design, code,
test, social, documentation and technology) [13, 16, 21]. In this
regard, several quality or DIs have also been proposed, which
are briefly described below.

SonarQube2 computes a Technical Debt Index based on
estimations of the time needed for fixing the violations to code
and design rules found by the tool. It proposes the SQALE [12]
model for estimating technical debt by considering the remedi-
ation cost of each issue and the ratio between the remediation
cost of the issues and the cost of starting over. CAST [4]3

estimates technical debt as the cost of remediating violations
of good architectural or coding practices in production code
based on the detection of structural problems. Structure1014

index shows a Structural over-Complexity view to estimate the
proportion of the system that is affected by architectural issues.
Particularly, the complexity and proportion of the system
involved in tangles are taken into account.

Roveda et al. [17] defined the ADI based on the detec-
tion of ASs by means of the Arcan tool. Analogously, Wu
et al. [23] defined a Standard Architecture Index including
structure, class/functionality and global measures referring
to both source code and software models, which reflect on
recurring architectural problems (or smells). Verdecchia et al.
[22] proposed a step-by-step method to build architectural debt
indexes based on architectural violations that can be identified
through static analysis rules. To validate their approach, they
implemented an index prototype that considered a selection of
the most architecturally-related SonarQube rules.

Despite the increasing interest on the definition of DIs and
how to compute them, the identification of critical ASs and
design issues has received comparatively less attention. In
this regard, Shahbazian et al. [19] aimed at preventing the
adverse effects of architectural decay by automatically de-

1https://www.hello2morrow.com/products/sonargraph
2https://www.sonarqube.org
3https://www.castsoftware.com
4https://structure101.com/

Smell history
building

Smell
Information
Extraction

Sensitivity
Analysis

- Input Path
- Versions to process
- Debt Index to use

- Type of analysis
- Level of analysis

Project files

Smell history

Smell Ranking

Figure 1. Main processing stages and parameters of Sen4Smells

tecting architecturally-significant issues based on their textual
information and their recovered architecture. On this basis, a
predictive model based on machine learning techniques was
developed to predict the architecture significance of a newly-
submitted issue.

III. TOOL ARCHITECTURE & BACKGROUND

Sen4Smells is designed as a 3-stage pipeline architecture,
as shown in Figure 1. A prototype and examples are publicly
available in GitHub5.

The first stage, called Smell Information Extraction, pro-
cesses a sequence of Java system versions for the project under
analysis, in order to detect instances of ASs and to compute
metrics associated to them. The system versions (project files)
to analyze are provided as inputs by the tool users. We assume
they are looking for design problems at the current version
(i.e., the latest provided version). The version processing is
normally based on a static code analysis, which is delegated
to wrappers of existing tools (e.g., Arcan, Sonargraph) based
on the DI selected by the user. In our context, a DI is based
on predefined AS types and metrics. For example, Sonargraph
Structural Debt Index (SDI) is a cumulative function of the
cycles (i.e., the smell type) and the number of dependencies
to be removed (e.g., a metric) to break those cycles.

To analyze the trends in the evolution of ASs (or AS
aggregations), the second stage, called Smell History Building,
creates the evolution history of the different ASs across the
range of versions. This evolution history can be seen as a
matrix [10], in which each column represents a version at
time t and each row represents a smell instance. The cells
of a given row keep the values of a smell metric across
versions. This way, we can trace “paths” of smell variations
(for a metric of interest) over time. The metrics (or scores)
to consider for a given DI are configured by the user. Note
that the user’s focus is on ASs appearing in the current version
(i.e., the last known version), whose behavior can be explained
through the history of the smell metrics in past versions. Once
computed, the evolution history of each AS is stored in a CSV
file to be processed by the SA. Table I shows the evolution
of scores for a subset of ASs (left-most column) detected in
8 versions of Apache OpenJPA. The codes cd, ud and hl
correspond to instances of three types of ASs used in our
work, namely: Cyclic Dependency, Unstable Dependency, and
Hub-like Dependency [14, 20], respectively.

5https://github.com/tommantonela/Sen4Smells

openjpa
1.0.0

openjpa
1.1.0

openjpa
1.2.0

openjpa
2.0.0

openjpa
2.1.0

openjpa
2.2.0

openjpa
2.3.0

openjpa
2.4.1

ud13 1.85 4.1 2.05 4.5 2.25 2.3 2.3 2.25

ud36 1.89 2.28 2.56 1.89 1.62 1.35 1.62 0.6

ud12 1.8 2.05 2.1 2.25 4.7 4.8 2.4 2.35

ud76 0.6 1.7 1.7 2.43 1.8 2.43 1.8 2.43

ud4 0.81 0.81 1.26 1.26 1.8 1.8 1.8 2.43

ud17 0.68 0.68 0.36 1.66 1.57 1.42 1.42 1.66

ud49 0.8 0.8 0.8 1 1.53 1.53 1.53 1.53

hl26 0.35 0.5 0.5 0.45 0.5 0.55 1.2 1.2

ud10 0.48 0.13 0.13 0.21 0.28 0.21 0.21 0.28

cd34 - - - - 1.05 0.9 0.9 1.05

cd35 - 0.27 0.2 0.27 0.27 0.3 0.3 0.3

cd48 1.26 1.26 1.26 1.59 1.59 1.59 1.59 1.59

ud7 - - - 0.26 0.26 - - 0.26

Table I
EVOLUTION OF SCORES FOR SMELLS ACROSS DIFFERENT OPENJPA

VERSIONS

At last, the third stage is the Sensitivity Analysis, which
takes as input the smell evolution paths and the chosen DI to
report a ranking of smells (or other system elements) to the
user. Given a DI formulation (e.g., the ADI definition [17]),
we see it as a black-box model that relates inputs (the values of
the ASs metrics) to a numeric output (the index value for each
system version). In this model, the relations between inputs
and output are generally not direct, as the model might be non-
linear and change over time. This model is exercised with the
Sobol method, which is a global SA method for measuring
the contribution of the inputs to the output variance (other
SA methods could also be applied). As a result, a sensitivity
value (also known as Sobol index) is assigned to each AS. The
higher the Sobol index for a smell, the higher the chance that
variations in the DI are due to that smell. Thus, we interpret the
Sobol index of a smell as the sensitiveness of the system design
portion affected by that smell with respect to the DI, which is a
proxy for the overall system quality. The SA can be performed
at the level of AS (which is a fine-grained level), but also at
other granularity levels. For instance, the user can be interested
in grouping the ASs according to the system packages or to
smell types. In the former case, the smell features are grouped
per top-level package, and the SA returns a ranking of critical
packages. In terms of the tool concepts, this means that the DI
can be decomposed using different criteria, and then the SA
is accordingly adjusted. For example, Figure 2 shows a report
of key ASs and key packages for OpenJPA (X axes) using the
Sobol method.
A. Architectural Smells and Debt Indexes

Architectural smells can be defined as a combination of
architectural constructs that often indicate modifiability prob-
lems in the system [7]. An AS usually comes from a poorly-
understood or sub-optimal design decision. Different ASs have
been catalogued in the literature. In Sen4Smells, various types
of ASs can be processed, based on the underlying detection
tools available in the Smell Information Extraction module.
As mentioned in previous sections, we currently support
the following dependency-based smells: Cyclic Dependency
(cd), Unstable Dependency (ud), and Hub-like Dependency
(hl) [14, 20]. A cd refers to a set of packages being involved
in a chain of (usage) relations that breaks the desirable acyclic

ud13 ud36 ud12 ud76 ud4 ud17 ud49 hl26 ud10

S1

(a) Sobol Indices for key smells

S1

(b) Sobol Indices for key packages

Figure 2. Results of sensitivity analysis for OpenJPA based on ADI

nature of a system dependency structure. A ud describes a
package that depends on other packages that are less stable
than itself. A hl arises when a package has outgoing and
incoming dependencies with many other packages. These
ASs have been recently connected to architecture degradation
issues (e.g., in the form dependency violations) [8].

For the purpose of the tool, the target DI is seen as a
function of the ASs that are present in the system. This
perspective has also been adopted in recent index formula-
tions6 [17, 23]. For instance, the ADI definition relies on two
metrics (pagerank and severity) that characterize each AS [17].
Furthermore, a DI is sensitive to changes in metric values for
certain ASs. For instance, an AS might have dependencies
being added or cycles being enlarged from one version to
another, which impact on the index values.

B. Decomposition of the Index Score

For analyzing DI values at the current system version based
on the previous ones, we perform a decomposition of the
(global) index formula into its constituent parts. These parts
(or elements) can refer to different granularity levels, namely:
(i) the ASs themselves (bottom level), or (ii) groups of
ASs using a predefined criterion. For example, we might
group the ASs based on either their type or the package
structure of the system. At each level, the corresponding
elements are characterized by the metrics of the index formula,
which altogether provide index values for the elements. This
decomposition strategy is sketched in Figure 3 for the ADI,
showing two levels of AS aggregations (packages and AS
types).

From a temporal perspective, the decomposition strategy
looks at the index values over a sequence of system versions.
This way, we can analyze trends in the evolution of ASs, or
in the evolution of AS aggregations. Departing from the index

6https://blog.hello2morrow.com/2018/12/a-promising-new-metric-to-track-
maintainability/

ADI value at v2ADI value at v1

ADI value at vt-p

(current version)

smell scores
(basic)

package scores
(aggregated)

smell-type scores
(aggregated) DEVELOPER

Figure 3. Decomposing a debt index (e.g., the ADI) at different levels of granularity, and looking at previous versions

decomposition, the elements at each level are seen as variables
whose values follow a particular distribution over time. These
distributions are fed into the SA for interpreting the DI.

C. Sensitivity Analysis

SA techniques study how the variation in the output of
a model can be apportioned among model inputs [18]. In
our problem, the input variables are the scores (at a given
decomposition level), while the model output is the global DI
value. If a change in a variable results in a relatively large
change in the DI, then we say that the DI is sensitive to that
variable. From this analysis, a ranking of key variables (e.g.,
ASs, packages, or smell types) can be obtained.

The Sobol method [18] is a global SA technique, which
allocates the output variability to the variability of the inputs,
taking into account all the variables and interactions among
them. The results of this method are the so-called Sobol
indices for the input variables. The higher the value of a
sensitivity index, the more influential the respective variable
is for the model. First-order indices (S1) reflect the main
effect and measure the fractional contribution of a single
variable to the output variance. Total-order indices (ST)
take into account the main, second-order and also higher-
order effects of variables on the output variance. Figure 2a
shows the S1 values for the top-10 ASs for the ADI. For
instance, an S1 of 0.18 was obtained for ud36, which
indicates that this smell is very likely to influence the ADI.
A plausible developer’s interpretation of the situation is that a
few ud smells are more problematic (in terms of increased
dependencies) than a large group of cd smells (if their
cyclic dependencies remain stable). If we instead analyze
package org.apache.openjpa.conf in Figure 2b, an
S1 value of 0.12 reflects an influential role of (the ASs in)
the package for the ADI. The analysis reveals other influential
packages as well, such as: org.apache.openjpa.meta
and org.apache.openjpa.util.

The transformation of DI metrics into SA variables involves
mainly three tasks: (i) specifying the decomposition level for
the variables (e.g., smells, packages), (ii) sampling values

from the evolution history of those variables, and (iii) com-
puting the Sobol indices based on that sample. For sampling
the values of the variables, we rely on their distribution in a
range of system versions. For cd smells, the distribution often
shows cycles becoming larger (or smaller) over time; while
for ud and hl smells, the variations are due to an increase
(or decrease) in the number of dependencies to the packages
affected by the ASs. When ASs are aggregated in packages or
types, an analogous distribution can be derived.

IV. CASE-STUDIES

Currently, Sem4Smells works with the ADI (Arcan) and the
SDI (Sonargraph) indexes. Each DI needs an integration with
the corresponding tool, which is adapted and parameterized in
the pipeline. These integrations are briefly explained below.
Afterwards, we describe a number of experiments performed
with the tool for ranking ASs.

A. Arcan & the Architecture Debt Index

The Smell Information Extraction component takes the JAR
files of the system versions, and passes them on to a wrapper
for the Arcan engine. When invoking Arcan on a given version,
it generates a version object that contains all the detected
ASs and their ADI features. To ensure extensibility, this
version structure is independent of the particular DI. Then, the
Smell History Building component merges all versions into a
smell evolution matrix, which is saved to a standard CSV file.

The Sensitivity Analysis component reads from the matrix
to run the Sobol analysis. The desired granularity level for the
analysis is configured in this component, which triggers the
creation of AS groups as Sobol variables. This functionality is
general for any index or AS type. In addition, the ADI formula
that maps the variables to index values needs to be set. For
ADI, this formula was implemented via a general class of the
component. A CSV file for each ranking is finally computed
as output.

B. Sonargraph & the Structural Debt Index

Unlike Arcan, each system version needs to be initially
processed by Sonargraph, and then exported as an XML report

System Description Version HL UD CD

Apache
Camel

Framework for message-oriented
middleware with a rule-based
routing and mediation engine
that provides a Java object-based
implementation of the Enterprise
Integration Patterns using
an application programming
interface to configure
routing and mediation.

apache-camel-2.2.0 3 10 48
apache-camel-2.3.0 3 10 49
apache-camel-2.4.0 3 10 49
apache-camel-2.5.0 3 10 49
apache-camel-2.6.0 3 10 49
apache-camel-2.7.0 3 6 26
apache-camel-2.8.0 3 11 78
apache-camel-2.9.0 3 11 90
apache-camel-2.10.0 3 11 92
apache-camel-2.11.0 3 11 97
apache-camel-2.12.0 3 11 97
apache-camel-2.13.0 3 11 98
apache-camel-2.14.0 3 11 98
apache-camel-2.15.0 3 11 98

Apache
Cxf

It is a relational database
management system that can
be embedded in Java programs
and used for online
transaction processing.

apache-cxf-2.0.6 4 52 110
apache-cxf-2.1.1 4 61 132
apache-cxf-2.2.1 3 74 150
apache-cxf-2.3.0 3 79 197
apache-cxf-2.4.0 4 86 199
apache-cxf-2.5.0 3 88 206
apache-cxf-2.6.0 3 92 146
apache-cxf-2.7.0 3 95 196

Hibernate

It is an object-relational
mapping tool for the Java
programming language
that provides a framework
for mapping an object-oriented
domain model to a relational
database.

hibernate-core-4.0.0.Final 5 30 153
hibernate-core-4.1.0.Final 5 33 163
hibernate-core-4.2.0.Final 6 32 171
hibernate-core-4.3.0.Final 6 62 230

Table II
RANGES OF ANALYZED VERSIONS AND DESCRIPTION OF THE THREE

SYSTEMS

file. This file contains information about cycles and SDI
features. In the Smell Information Extraction component, we
rely on a Sonargraph API7 for accessing each XML file as
a version object. The process continues with the generation
of the smell evolution file by the Smell History Building
component. Finally, the Sensitivity Analysis component runs
the Sobol method as in the Arcan case, except that the SDI
formula is configured as the index to be used.

C. Preliminary Evaluation

As an initial assessment of the applicability of the pro-
posed approach, we analyzed three open-source Java systems,
namely: Apache Camel, Apache Cxf, and Hibernate, which
have already been used in other smell-based analyses [6, 11,
19]. These systems comprise several versions, including major
and minor releases. Using open-source projects is a common
practice in order to calibrate metrics and indexes. Apache was
chosen as it is one of the largest open-source organizations that
produces well-maintained systems. In addition, we included a
non-Apache system in order to keep our analysis general. We
considered a predefined range of minor versions in between
two major versions per system, as summarized in Table II.
The number of AS instances per type are also listed. When
selecting the ranges of versions, we tried to ensure that there
were enough ASs of different types in the versions, and also
that these ASs had some degree of variability over time. We
considered the ADI as the target DI, and the Arcan tool was
used for detecting the AS instances and computing the ADI
values.

Our goal was to investigate whether the key ASs resulting
from the SA exhibited correspondences with design issues (or

7https://github.com/sonargraph/sonargraph-integration-access

problems) in the analyzed systems.
The analysis was only performed for individual ASs. The

rankings of smells produced by the Sobol method for the
3 systems are shown in Table III. We found particular AS
instances with high Sobol indices, which were unnoticed when
simply computing their ADI scores or looking at the ADI con-
tributions per smell type. For Hibernate and Cxf, an interesting
observation was that many key ASs corresponded to ud and
hl smells, rather than to cd smells. These indicators somehow
differ from the common belief about the sole importance of cd
smells [15], which is also shared by other debt indexes. The
results seem to implicate that a DI should also incorporate hl
and ud smells in their computations.

In order to understand whether the sensitive elements of
the SA rankings were related to actual design issues, we
inspected the publicly available information about the systems.
In particular, we took information from the Jira platform8,
which allows to perform queries on the issues of a given
project. An issue is a message regarding a bug, a task or
another project issue. We considered three types of Jira issues
for packages, namely: bug, improvement and new feature. Our
hypothesis was that a sensitive AS should manifest as “some
work to do” with respect to one or more packages in the
system, either in the form of functional changes (e.g. new
feature) or maintenance tasks (e.g., bug, improvement). If so,
we can tag the affected packages as being part of a design
problem. Hence, for each package affected by at least one key
AS, we counted the number of Jira issues in which the package
name appeared. Then, each ud and hl smell was assigned to
the issue count of the corresponding package. For cd smells,
since they affect several packages, instead of using the issue
count, we computed the mean of the number of issues affecting
the packages of the cycle.

On this basis, we decided whether a smell si (from an
SA ranking) correlates with a design problem at package pj
(assuming that si affects pj) using the following rule: if the
issue count for pj exceeds a given threshold, then a correlation
between si and pj regarding a design problem is asserted. We
assigned a different threshold to each project under analysis.
The threshold was computed as the median of the distribution
of Jira issues of the project. In this way, the Camel threshold
was set to 7.76, the Cxf threshold was set to 4, and the
Hibernate threshold was set to 1. According to these settings,
the percentages of key ASs that were actually linked to design
problems by our rule were: 55% for Apache Camel, 55% for
Apache Cxf, and 80% for Hibernate.

Overall, we were able to validate 50% or more ASs reported
by the Sobol method for the three systems. In addition, the
analysis of specific ASs showed correlations between the ASs
and certain design issues.

V. CONCLUSIONS

In this paper, we have described the Sen4Smells tool that
performs a sensitivity analysis of a debt index based on the
architectural smells involved in the debt index formula. A

8https://www.atlassian.com/software/jira

Apache Camel Apache Cxf Hibernate

Smell I DP? Affected
Packages Smell I DP? Affected

Packages Smell I DP? Affected
Packages

hl203 17.00 yes ∗.impl ud56 8.00 yes ?.interceptor ud569 1.00 yes ◦.persister.
entity

ud925 9.00 yes ∗.util ud124 3.00 no ?.endpoint ud304 3.00 yes ◦.mapping
hl104 66.00 yes ∗.processor ud162 6.00 yes ?.transport ud1092 61.00 yes ◦
ud447 26.00 yes ∗.model ud120 2.00 no ?.ws.policy hl863 2.00 yes ◦.cfg
cd173 7.36 no many ud301 250.00 yes ? ud959 0.00 no ◦.pretty

cd596 8.36 yes many ud842 2.00 no ?.frontend ud1440 0.00 no ◦.dialect.
function

cd612 7.90 yes many ud707 7.00 yes ?.jaxrs.utils hl1093 1.00 yes ◦.engine
cd835 7.78 yes many ud777 4.00 yes ?.binding.soap hl470 10.00 yes ◦.type
cd776 6.22 no many ud697 3.00 no ?.tools.common ud1545 1.00 yes ◦.loader

hl759 9.00 yes ∗.builder ud4 1.00 no ?.tools.common.
model ud1371 4.00 yes ◦.dialect

ud659 5.00 no ∗.model.
language ud380 0.00 no ?.jaxws.support ud1571 1.00 yes ◦.proxy

cd808 7.75 yes many cd392 4.30 yes many ud706 1.00 yes ◦.event
cd627 6.89 no many cd299 3.10 no many ud1258 1.00 yes ◦.criterion
cd510 6.90 no many cd121 4.10 yes many cd1200 1.57 yes many
cd177 6.63 no many cd824 4.38 yes many ud554 1.00 yes ◦.exception
cd630 6.63 no many cd809 4.50 yes many cd950 1.57 yes many
cd301 8.71 yes many cd597 4.00 yes many cd1707 1.30 yes many
cd861 7.90 yes many cd479 4.78 yes many ud818 1.00 yes ◦.impl
cd377 6.30 no many cd752 3.80 no many cd109 1.78 yes many

cd567 7.29 no many ud306 0.00 no ?.tools.java2wsdl.
processor.internal ud801 0.00 no ◦.hql.ast.util

Legend: I=#Issues, DP?=Design Problem? ∗=org.apache.camel, ?=org.apache.cxf, ◦=org.hibernate

Table III
RANKING OF TOP-20 KEY SMELLS FOR THE ANALYZED SYSTEMS

direct benefit of this analysis is that makes a DI actionable
for engineers, by enabling the identification of key ASs and
problematic packages.

The initial results of applying the tool for ADI and com-
puting AS rankings have been promising. Nonetheless, some
threats to validity should be mentioned. A first threat is
our reliance on the Arcan tool for detecting the ASs in the
system versions. Other tools, such as Sonargraph, could have
detected different smell instances, and thus, led to a different
evolutionary history. A second threat (for the evaluation) is
the ADI formula, as the SA assesses the variability of the AS
scores in terms of that formula. The ADI computation depends
on the AS type. For hl and ud smells, whose topology is
based on incident dependencies to a given package, their ADI
scores can be affected by the addition of dependencies from a
version to another. For the cd smells, in turn, the variations in
topology are due to cycles getting bigger (or smaller, or even
disappearing) over time. If SDI were to be used, its formula
is only based on cd smells. Regarding external validity, the
results of the evaluation were based on a manual analysis
of the system repositories by the authors. This analysis was
confined to predefined ranges of versions. The selection of
different ranges of versions could affect the outputs of the
SA methods. Furthermore, the rankings of ASs should be also
validated for design issues by human developers.

Regarding the Sobol method for the SA, we found it useful
because it makes no assumptions about the index formulations.
However, in projects with a large number of smells, we
observed that the computational efforts required by Sobol
might increase rapidly with the number of variables. In such
cases, more efficient methods should be explored.

As future work, we plan to integrate the tool pipeline

within a build process of a project, and including support for
creating visualizations and reports based on the SA rankings.
As regards the experimental work, we need to further validate
whether the rankings computed by Sen4Smells are correlated
with critical parts of the analyzed systems. Finally, we plan to
extend Sen4Smells with more indexes and smell types.

REFERENCES

[1] F. Arcelli Fontana, R. Roveda, and M. Zanoni. Technical
debt indexes provided by tools: A preliminary discussion.
In 2016 IEEE 8th MTD, pages 28–31, Oct 2016.

[2] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. E. Tam-
burri, M. Zanoni, and E. D. Nitto. Arcan: a tool for
architectural smells detection. In IEEE ICSA 2017, 2017.

[3] H. Christopher Frey and S. R. Patil. Identification and
review of sensitivity analysis methods. Risk Analysis, 22
(3):553–578.

[4] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating
the size, cost, and types of technical debt. In 2012
Third International Workshop on Managing Technical
Debt (MTD), pages 49–53, 2012.

[5] N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, and I. Gorton.
Measure it? manage it? ignore it? software practitioners
and technical debt. In 2015 10th ESEC/FSE.

[6] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni.
Automatic detection of instability architectural smells. In
2016 IEEE ICSME, pages 433–437.

[7] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic.
Identifying architectural bad smells. In CSMR 2009,
pages 255–258. IEEE.

[8] S. Herold. An initial study on the association between
architectural smells and degradation. In A. Jansen, I. Ma-

lavolta, H. Muccini, I. Ozkaya, and O. Zimmermann,
editors, Software Architecture, pages 193–201, Cham,
2020. Springer. ISBN 978-3-030-58923-3.

[9] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao,
S. Malek, and Y. Cai. A study on the role of software
architecture in the evolution and quality of software. In
12th MSR, pages 246–257, Piscataway, NJ, USA, 2015.
IEEE Press. ISBN 978-0-7695-5594-2.

[10] M. Lanza. The evolution matrix: Recovering software
evolution using software visualization techniques. In 4th
IWPSE, pages 37–42, New York, NY, USA, 2001. ACM.
ISBN 1-58113-508-4.

[11] D. Le, D. Link, A. Shahbazian, and N. Medvidovic.
An empirical study of architectural decay in open-source
software. In IEEE ICSA, 2018, pages 176–185.

[12] J.-L. Letouzey. The SQALE method for evaluating
technical debt. In MTD 2012, pages 31–36, June 2012.

[13] Z. Li, P. Avgeriou, and P. Liang. A systematic mapping
study on technical debt and its management. Journal of
Systems and Software, 101, 2015. ISSN 0164-1212.

[14] R. Marinescu. Assessing technical debt by identifying
design flaws in software systems. IBM Journal of
Research and Development, 56(5), 2012. ISSN 0018-
8646.

[15] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda.
Identifying and prioritizing architectural debt through
architectural smells: a case study in a large software
company. In ECSA. Springer, 2018.

[16] R. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas.
In search of a metric for managing architectural technical
debt. In IEEE/IFIP WICSA and ECSA, pages 91–100,
Finland, 2012. IEEE.

[17] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zan-
oni. Towards an architectural debt index. In 44th SEAA
2018, pages 408–416.

[18] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto.
Sensitivity Analysis in Practice: A Guide to Assessing
Scientific Models. Halsted Press, New York, NY, USA,
2004. ISBN 0470870931.

[19] A. Shahbazian, D. Nam, and N. Medvidovic. Toward
predicting architectural significance of implementation
issues. In 15th MSR, pages 215–219, 2018.

[20] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells. Morgan
Kaufmann, 1 edition, 2015. ISBN 978-0-12-801397-7.

[21] E. Tom, A. Aurum, and R. T. Vidgen. An exploration of
technical debt. Journal of Systems and Software, 86(6):
1498–1516, 2013.

[22] R. Verdecchia, P. Lago, I. Malavolta, and I. Ozkaya.
Atdx: Building an architectural technical debt index. In
Evaluation of Novel Approaches to Software Engineering
(ENASE), 2020.

[23] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen,
Y. Ge, W. Liu, and J. Zhang. Software architecture meas-
urement - experiences from a multinational company. In
12th ECSA, 2018, pages 303–319.

