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Abstract One fundamental problem in social networks is the identification of
groups of elements (also known as communities) when group membership is not
explicitly available. Community detection has proven to be valuable in diverse
domains such as biology, social sciences and bibliometrics. Thus, several commu-
nity detection techniques have been developed. Nonetheless, as real networks are
very heterogenous, the question of how communities should be assessed remains
open. Whilst there are several works that have analysed the performance of diverse
community detection algorithms over artificial graph benchmarks, the evaluation
over real social networks has received comparatively less attention. Motivated by
the lack of such studies, this chapter focuses on the analysis of the performance of
community detection algorithms over social media networks, and the quantification
of the structural properties of the discovered communities.

12.1 Introduction

Social networking and microblogging sites have increased their popularity in
recent years attracting millions of users, who spend an increasing amount of
time sharing personal information and making new friends. For example, sites
like Flickr, YouTube, Facebook or Twitter allow users to create content, publish
photographies, comment on content other users shared, tag content and socially
connect with other users in the form of subscriptions or friendships. Consequently,
social networking sites affect how people communicate and interact, leading to the
formation of relationships of heterogeneous nature, origin and strength. Users might
choose their friends because they publish interesting information, share common
interests or common friends, or just because they are celebrities, amongst other
possible explanations. Thereby, topological relations could lead to the existence of
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casual links. In this context, the significance and importance of relations should
not be only analysed based on topological information, but in conjunction with
other information sources or data views, which might implicitly define connections
between social media users. For example, whether two users use the same terms
or hashtags, or post on the same topics. It is worth noting that the content users
consume or post might depend, for example, on their mood and environment [8].

One fundamental problem in social networks is the identification of groups of
elements (users, posts or other elements) when group membership is not explicitly
available. A group or community can be defined as a set of elements that interact
more frequently or are more similar to other community members than to outsiders.
Community detection has proven to be valuable in diverse domains such as biology,
social sciences and bibliometrics. For example, community detection techniques
can be used for identifying groups of users with similar purchase history on
Amazon to create more efficient product recommendation systems, detecting topics
in collaborative systems, identifying real-world landmarks in Flickr by clustering
photos, detecting events on Twitter streams or for studying the information diffusion
problem by solving the influence maximisation problem in Foursquare.

In the context of multidimensional networks, considering only one information
source might be insufficient for accurately capturing community structure [40]. For
example, in Twitter, social relations might be sparse, and users might belong to the
same community even if there are no explicit friendship relations amongst them.
Relations can also be noisy. As it is easier to connect with other users online than in
the real world, users might have thousands of online friends. Hence, the correct
identification of communities might be hindered if only friendship interactions
are considered. Conversely, other users might have a few friends, but frequently
engage in posting or commenting activities, which could reveal valuable information
for discovering communities, despite the fact that social media content might be
topically diverse and noisy. Thus, the integration of multiple information sources
could help to overcome the problem caused by incomplete or noisy information
in each dimension, as well as obtaining more accurate and reliable community
partitions. Nonetheless, combining multiple and possibly heterogeneous data views
poses new challenges; for example, how to fuse the different views for performing
an integrated analysis.

Several community detection methods have been developed based on techniques
from a variety of disciplines, such as statistical physics, biology, applied mathemat-
ics, computer science or sociology [44], mostly relying on similarity measurements
amongst the nodes in the network [38], which might not be simple. Interestingly,
most of them only focus on one data view. Moreover, although all methods aim
at identifying meaningful communities, as they might rely on different notions of
communities, their results might not be always directly comparable. In most real-
world applications, a unique correspondence between nodes and communities (i.e.
a ground truth) might not be available, which hinders the reliability assessment
of community detection techniques. As a result, community detection algorithms
are traditionally tested on a few real or artificial networks [30]. As real-world
social networks are very heterogeneous, the question regarding over which data
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evaluate the algorithms remains open. On the other hand, artificial networks rely
on various statistics like average degree, degree distribution and shortest path
average, amongst others, which are not possible to control in a real environment.
Hence, in both cases, algorithms are usually evaluated over networks with very
specific and limited set of characteristics, which might not match the typical
features of real-world networks. Whilst there are several works that have analysed
the performance of diverse community detection algorithms over artificial graph
benchmarks [12, 18, 30, 44], their evaluation over real social networks has received
comparatively less attention [20].

Considering the increasing amount of available information in social networks,
the necessity of integrating such heterogeneous information and the lack of studies
analysing the problem of community detection over real-world networks, this
chapter addresses three challenges. First, the definition and extraction of multiple
sources of information regarding user interactions and activities that can be inferred
from social media data. Second, the assessment of the performance of community
detection algorithms in the context of two real-world social media networks.
Third, the exploration and evaluation of diverse similarity measures that could be
considered during the community detection process. To that end, it is also explored
how to quantify the structural properties of the discovered communities in terms
of several quality metrics. The final goal of this study is to provide some insights
regarding the integration of diverse information sources and user interactions, as
well as the selection of both algorithms and metrics for performing and assessing
the community detection process.

The rest of this chapter is organised as follows. Section 12.2 discusses related
research. Section 12.3 describes background concepts regarding the definition
and extraction of graphs from social media sites, and presents the community
detection techniques and the similarity metrics evaluated in this study. Section 12.4
describes the experimental evaluation performed over two real-world networks from
Twitter and Flickr. Section 12.5 presents the observed results. Finally, Sect. 12.6
summarises the results and conclusions drawn from the analysis.

12.2 Related Work

According to graph theory [22], communities have also been defined as cliques
(every node is adjacent to each other) or connected components (every pair of nodes
is connected by at least a path). In this context, the goal of community detection
techniques (also known as graph clustering techniques) is to divide the nodes into
communities (or clusters), such that the nodes of a particular community are similar
or connected in some predefined sense [38]. Several works have been dedicated to
formalise the intuition that a community is a set of nodes that has more or better
connections between its members than with the remainder of the network [20].
For example, in some cases it might be desirable to obtain communities of similar
order and/or density. Interestingly, not every graph presents a structure with natural
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communities. In the case of a uniform graph structure in which edges are evenly
distributed over the set of nodes, clustering results will be rather arbitrary.

Community detection techniques can be either local or global. Generally [31], the
definition of global communities relies on the number of edges falling between them
(cut size), the profoundness of their separation, modularity (i.e. the extent to which a
given community partition deviates from the hypothetical state in which the network
would be randomly rewired under the constraint of same-degree for each node [27])
or on the similarity between nodes. Community detection can be performed either
by considering all data elements at once, or by iteratively assigning one element
at a time to the appropriate cluster. Approaches that require the entire graph to be
simultaneously accessible do not scale for large graphs [38].

On the other hand, local community detection techniques provide an alternative
to alleviate scalability challenges of global techniques as they only focus on a
portion of the network under study. Thus, they are expected to circumvent the
memory bottleneck faced by global methods. Since it is not feasible to study the
community structure as a whole in terms of space and computational complexity,
communities can be progressively discovered by means of the explicit or implicit
relations defined between the nodes. This type of technique starts the network
exploration process from a set of seed nodes and progressively adds adjacent nodes
to the community as long as those node additions lead to the increment of some
local community quality measure [31].

In general, local techniques present limitations that need to be addressed in order
to be effectively applied on large-scale social networks. First, the performance of
local techniques is affected by the density (the number of links of the interconnected
communities and the total number of links of the network) and the size of
networks [29]. In this regard, techniques based on optimising modularity might
fail to identify communities that are smaller than a size that depends on the
number of nodes in the network and the link density of communities, even when
communities are unambiguously discovered [13]. Fortunato and Barthélemy [13]
found that the detection of communities based on modularity is not consistent
with the modularity optimisation, which might favour network partitions in large
communities. According to the authors, by enforcing modularity optimisation, the
different possible partitions of the network are explored at a coarse level, so that
communities that are smaller than a determined scale might not be resolved. The
origin of the resolution scale lies in the fact that modularity is a sum of terms,
where each term corresponds to a community. Thus, finding the maximal modularity
is equivalent to look for the ideal trade-off between the number of terms in the
sum. An increment in the number of communities does not necessarily imply an
increment in modularity, as communities would be smaller so each term of the sum
would also be smaller. Furthermore, modularity optimisation results in communities
with similar sizes, which causes modularity to have a peak. The problem is that the
supposedly optimal partition imposed by mathematics does not necessarily capture
the actual community structure of the network, in which communities might have
heterogeneous sizes. As a result, alternative measures for analysing community
partitions have to be devised.
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The remainder of this section presents relevant works that have aimed at defining
benchmarks for comparing the performance of community detection techniques
(Sect. 12.2.1), and metrics for comparing the performance of community detection
techniques (Sect. 12.2.2).

12.2.1 Benchmarks for Community Detection

For newly designed techniques, it is necessary to assess their performance and
compare it with that of other techniques. Nonetheless, the evaluation of techniques
has received little attention in the literature [12]. As a result, it might be difficult
to determine which technique is most reliable in the context of a certain domain
or application. Generally, evaluations consist in applying the new techniques to a
small set of simple benchmark graphs, whose community structure is known or
easy to recover; for example, the social network of Zachary’s karate club [45], the
social network of bottlenose dolphins living in Doubtful Sound [21] or the American
college football teams [14]. Zachary’s karate club is one of the most used graphs and
comprises two communities. In the American college football team graph, there
are 115 nodes representing the teams, which are connected if they have played
against each other. The natural partition of the graph comprises 12 communities,
each representing a geographical area. Note that both networks are undirected and
non-overlapping, as it is very difficult to find directed graph datasets with known
community structures and sufficient size [22]. When considering real networks, it
is worth noting that there is no guarantee that meaningful communities, defined on
the basis of non-structural information, will match those detected by methods solely
based on graph structure [12]. Moreover, in most cases, graph datasets are of small
scale, which hinders their usefulness for assessing the performance of techniques at
large scales. Thereby, it is crucial that the scientific community agrees on a standard
evaluation procedure. In this context, several works have focused on the design of
artificial benchmark graphs.

Condon and Karp [6] proposed one of the first graph benchmarks based on the
planted �-partition model with n = g · � nodes divided in � communities with
g nodes each. In this model, nodes of the same community are connected with
a probability pin, whilst nodes belonging to different communities are connected
with a probability pout. In this regard, each community represents a random Erdös-
Réngy graph with a connection probability p = pin. The modelled graph will
have a community structure when the intracluster edge density is higher than the
intercluster edge density, i.e. pin > pout. Following this model, Girvan and Newman
[14] introduced one of the most known benchmarks, which is parametrised so that
each network has 128 nodes divided into 4 groups, implying that pin and pout are
not independent [12].

Although the �-partition model is widely used, all nodes have approximately
the same degree, and all communities have the same size by construction. These
two features might not reflect the characteristics of real networks, in which degree
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distributions might be skewed with many nodes with low degree coexisting with
a few nodes with high degree (for example, in online social networks). Brandes
et al. [3] proposed a modification to the model named Gaussian random partition
generator in which community sizes have a Gaussian distribution. This variation
on community sizes also introduces heterogeneity in the degree distribution, as the
expected degree of a node will depend on the number of nodes in its community.
However, the introduced variations might still not be enough to represent real
networks. In all cases, the hypothesis that the connecting probabilities of each node
with the other nodes in the community or even with other communities are constant
might not represent the actual properties of networks.

Lancichinetti et al. [19] proposed the LFR benchmark, in which the distributions
of degree and community sizes are assumed to be governed by independent power
laws. Graphs are built as follows. First, community sizes are defined based on a
predefined power law distribution. Second, each node in a community is assigned a
degree, which is defined considering another predefined power law. Third, all stubs
of vertices of the same community are randomly connected to each other to maintain
the predefined degree distribution. Fourth, each node is connected to nodes in the
other communities.

It is worth noting that the described benchmarks correspond to undirected
networks. Although the problem of detecting communities on directed networks has
received comparatively less attention than on undirected networks, several bench-
marks have been introduced to deal with special types of graphs and community
structures. For example, Arenas et al. [1] extended Girvan and Newman’s [14]
benchmark to build graphs with embedded hierarchical structures. Additionally,
Lancichinetti and Fortunato [18] proposed a modification of the LFR benchmark to
create weighted, directed, and unweighted and overlapping networks. The weighted
graph is built based on an unweighted graph by assigning positive real numbers
to each edge. To that end, two new parameters are defined. The first parameter is
used to assign a strength to each node such that the power law relation between the
strength and the node degree is frequently observed in real networks. The second
parameter is used to assign the internal strength, which is defined as the sum of
the weights of the connections between a node and all its neighbours belonging
to the same community. Then, a greedy algorithm is applied to the graph so that
weights are consistent with the connection probabilities. For directed networks,
changes are imposed in the degree definition. Whilst in-degrees are defined based on
a power law, out-degrees are defined based on a δ-distribution. Finally, connections
are established by preserving both distributions.

In the case of unweighted and overlapping graphs, a new topological mixing
parameter is introduced to define the number of neighbours of a node that have at
least one membership in common. The generating procedure is equivalent to the
generation of a bipartite network where the two classes are the communities, and
nodes comply to the requirement that the sum of community sizes equals the sum
of node memberships. Although this benchmark aims at simulating the features
observed in real-world networks, the requirement that overlapping nodes interact
with the same number of embedded communities might be unrealistic [42]. Simple
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generalisations were proposed in which each overlapping node might belong to
different numbers of communities [25], or communities are converted to fuzzy
associations by adding a belonging coefficient to the occurrence of nodes [15].
Similarly, Sawardecker et al. [37] also proposed an extension of Girvan and
Newman [14]’s benchmark in which the probability of an edge to be present in
the network is a non-decreasing function based on the set of co-memberships of its
vertices.

12.2.2 Comparing Community Detection Techniques

In addition to considering graphs with a known community structure, the quality
of the communities discovered by a technique should be compared to that of other
techniques, aiming at selecting the most accurate one. This implies the selection of
criteria depending on the known structure of the network to define how similar the
discovered communities are. Several metrics have been used for this purpose, which
can be divided into three categories [12]: metrics based on pair counting, community
matching or information theory. Metrics based on pair counting depend on the
number of pairs of nodes that are assigned to the same or different communities.
Similarity metrics based on community matching aim at finding the largest overlap
between pairs of communities belonging to different partitions. A common problem
of this type of metrics is that some communities might not be considered if the
overlap with other communities is not large enough. The third category is based
on casting the problem of comparing communities as the problem of message
decoding in the context of information theory. The rationale of these metrics is
that if two community partitions are similar, little information is needed to infer
one partition, given the other. Thus, such extra information can be used as a
measure of dissimilarity. Evaluating the quality of the discovered communities is
non-trivial. The problem worsens when analysing overlapping communities [42], as
extending the evaluation metrics from disjoint to overlapping communities is rarely
straightforward.

Generally, there are two criteria to analyse the goodness of a community parti-
tion [20]. First, the number of edges or links amongst the nodes in each community,
and second, the number of edges amongst the members of each community in
relation to the nodes outside of it. These criteria characterise the connectivity
structure of a given community, built on the assumption that communities comprise
sets of nodes with many inner connections and few outer connections. Table 12.1
presents the definitions of the used metrics, where S represents the set of nodes of a
community, E represents the set of edges of a community, nS is the number of nodes
in community S, cS is the number of edges in the boundary of the community, i.e.
cS = |{(u, v) : u ∈ S, v /∈ S}|, mS is the number of edges inside the community,
i.e. mS = |{(u, v) : u, v ∈ S}|, d (u) is the degree of node u, σsw is the number of
shortest paths from node s to w and σsw (v) is the number of shortest paths from
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Table 12.1 Community quality measures

Cut ratio (↓) Measures the fraction of existing edges (out of all possible edges)
leaving the community. cS

nS (n − nS)

Triangle separation
ratio (TPR) (↑)

Measures the fraction of nodes inside a community that belong to a
triad. 1/nS∗
|{u : u ∈ S, {(v,w) : v,w ∈ S, (v,w) ∈ E, (u,w) ∈ E,

(v,w) ∈ E} �= ∅}|
Conductance (↓) Measures the fraction of total edge volume that points outside the

community. cS
2 ∗ mS + cS

Flake out degree
fraction (FlakeODF)
(↓)

Measures the fraction of nodes in the community that has fewer edges
pointing inside the community than outside.
1/nS ∗ |{u : u ∈ S} , |{(u, v) ∈ E, v ∈ S}| < d (u) /2|

Betweenness
centrality (↑)

Measures how often a node appears on shortest paths between nodes

in the community. 1/nS ∗ ∑
u,v,w∈S,u�=v �=w

σsw (v)
σsw

Closeness centrality
(↑)

Measures the average distance between every pair of nodes in the

community. 1/nS ∗ ∑
u,v∈S,u�=v

1
distance (u, v)

Eccentricity (↓) Averages the distance from each node to the farthest node in the
community. 1/nS ∗ ∑

u∈S max{distance (u, v) : v ∈ S}
Density (↑) Measures the fraction of edges (out of all possible edges) that appear

between the nodes in the community. It is based on the supposition

that good communities are well connected. 2 ∗ mS
nS (nS − 1)

Clustering
coefficient (↑)

It is based on the supposition that communities are manifestations of
locally inhomogeneous distributions of edges as pairs of nodes with
common neighbours are more likely to be connected with each other.

1/nS ∗ ∑
u∈S

|(v,w) ∈ E : v,w ∈ S, (u, v) ∈ E ∧ (u,w) ∈ E|
d (u) ∗ (d (u) − 1)

Separability (↑) Measures the ratio between the internal and external number of edges
in the community. It is based on the supposition that good
communities are well-separated from the rest of the network, i.e.
communities have relatively few edges pointing to other communities.
mS
cS

node s to w that pass through v. The arrows indicate whether a higher (↑) or a lower
(↓) score is preferable.

Considering the described types of metrics, Lancichinetti and Fortunato [18]
analysed the performance of 12 algorithms in the context of undirected and
unweighted, and directed and weighted networks. Performance was evaluated
in terms of computational time and normalised mutual information. Yang et al.
[44] evaluated 8 algorithms by quantifying their accuracy using complementary
measures and their computing time. The authors aimed at studying the dependency
between network size, computing time and the predicting power of techniques.
Finally, closely related to this study, Leskovec et al. [20] evaluated community
detection algorithms over real networks: a bipartite authors-papers networks from
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DBLP,1 the Enron e-mail network,2 a co-authorship network from Arxiv3 and a
social network from Epinions.4 Note that no social media data network was selected
for the analysis. The authors aimed at understanding the biases in the communities
discovered by the selected algorithms by analysing several objective functions.

12.3 Community Detection on Social Media

Considering the increasing amount of available information in social networks, the
development of a large number of community detection techniques, the necessity
of integrating heterogeneous data from multiple source, and the lack of studies
analysing either the performance assessment of community detection techniques,
or the problem of community detection over real-world networks, this chapter
focuses on four aspects. First, the definition of a graph in the context of social
media data (Sect. 12.3.1). Second, the analysis of the performance of several
community detection techniques (presented in Sect. 12.3.2). Third, the exploration
and evaluation of diverse similarity metrics that could be considered during the
community detection process (defined in Sect. 12.3.3). Fourth, the quantification
of the properties and characteristics of communities that determine the goodness
of algorithms (presented in Sect. 12.3.4). The final goal of this study is to provide
some insights regarding the integration of diverse information sources and user
interactions for community detection, as well as the selection of both the algorithms
and the metrics for assessing the community detection process.

12.3.1 Graph Derivation on Social Media

To apply a community detection algorithm, the information on which the underlying
graph structure is going to be based on has to be defined. Multiple and diverse
information sources can be extracted from social media data, and hence multiple
graph structures can be defined. Nodes might not only represent real people but
also other entities such as neighbourhoods, Web pages or tweets, amongst others,
depending on the task at hand to perform [23]. Then, once communities are
found, they can be integrated in diverse learning tasks such as topic detection, text
classification or clustering, link prediction or even feature selection.

Most community detection techniques are purely based on explicit social rela-
tions; however, in the context of social media data, both the social relations between

1http://snap.stanford.edu/data/com-DBLP.html.
2http://snap.stanford.edu/data/email-Enron.html.
3http://snap.stanford.edu/data/cit-HepPh.html.
4http://snap.stanford.edu/data/soc-Epinions1.html.

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/email-Enron.html
http://snap.stanford.edu/data/cit-HepPh.html
http://snap.stanford.edu/data/soc-Epinions1.html
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users and the characteristics of the published content are important for improving
the quality of the discovered communities [40]. Hence, besides the relations between
posts derived from the actual social relations between their authors (i.e. two posts are
socially connected if their authors are socially related), posts’ content resemblance
or common categories (in case they are available) could also help to establish
relations between them. It is worth noting that social information and content-
based relations offer complementary views of data, in this case, posts. Thus,
no individual relation might be sufficient for accurately determining community
memberships [39]. For example, social information might be sparse and noisy,
whilst content-based information could be irrelevant or redundant. Hence, it is
important to adequately combine the different types of relations for performing
community detection in social networks.

Content-based relations could be used either to establish new relations between
posts that are not socially related (named Independent graph derivation) or to
reinforce the social relations already found amongst posts (named Weighted graph
derivation). In the former case, social and content relations are assumed to be
independent from each other, i.e. edges in the graph represent not only social links
but also separated content ones. Hence, when considering both types of relations
independently, two nodes might be connected even when there is no explicit social
connection between them. In this graph derivation, the different relationships are
integrated by adding their corresponding matrices, as ARels = ∑

i∈Rels Ai , where
ARels represents the aggregated adjacency matrix, Rels is the set of selected
relationships and Ai are the adjacency matrices. Note that no differentiation is made
between the social and content-based relationships.

On the Weighted derivation, the graph only includes edges representing the social
relation between nodes, whose strength or relevance is given by the content features.
Thus, in this case, the quality of the social ties between nodes depends on an
adequate definition of the content-based features, which should allow to fully exploit
the social media data information. The final adjacency matrix for this derivation can
be defined as ARels = ASocial · ∑

i∈RelsW
Ai + ∑

i∈{Rels−Social−RelsW } Ai , where
ASocial represents the adjacency matrix for the Social relation and RelsW the set
of relationships chosen for weighting the Social relationship. Note that this graph
derivation also allows the integration of independent relationships, as showed by the
second term in the Equation.

By definition, all content-based relations are symmetric, i.e. they do not have
directionality. However, the same does not necessarily apply to the social or friend-
ship relations. For example, when considering the Follower/Followee relationship in
Twitter or the social relations in Instagram, the fact that user A follows user B does
not imply that user B also follows user A. Whilst the diverse social networks exhibit
different reciprocity levels, most community detection techniques only leverage
on undirected (and perhaps weighted) graphs. It is worth noting that developing
community detection techniques for directed graphs might be a difficult task [12],
and that several concepts that are theoretically well defined for undirected graphs
have not been yet extended to directed ones [22].
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12.3.2 Algorithms to Compare

Both global and local community detection algorithms were selected for the
comparison, which are described as follows.

Cobweb It is an incremental clustering algorithm [11]. The goal is to learn from
observations, in opposition to learning from examples. Cobweb incrementally
organises observations into a classification tree, in which each node is labelled
by a probabilistic concept that summarises the attribute-value distributions of the
elements under such particular node. Search is guided by a heuristic measure
called Category Utility, which can be regarded as a trade-off between the intraclass
similarity and interclass dissimilarity of elements.

Edge Betweenness It is a hierarchical decomposition process in which edges are
removed in the decreasing order of their Edge Betweenness score [14, 27]. This
technique focuses on the least central edges that connect separated communities.
Hence, communities are created by progressively removing edges from the original
graph. The computational complexity of the algorithm is �

(
v · e2

)
, where v

represents the number of nodes in the graph and e the number of edges, which might
make it impractical for large and dense graphs. One disadvantage of this algorithm
is that it builds a full dendrogram and does not provide any guidance about where
to cut it to obtain the final community partition, hence other measures are needed to
find that optimal partition.

Expectation Maximisation (EM) It is an iterative algorithm that alternates
between two steps, expectation (E) and maximisation (M) [9]. When applied to
clustering, expectation maximisation (EM) uses finite Gaussian mixture models
and iteratively estimates a set of parameters until a desired convergence value is
achieved. In the E step, for each instance it computes its membership possibility
to each cluster based on the initial parameters. In the M step, parameters are
recomputed based on the new membership possibilities. Theoretically, the running
time is not bounded.

Farthest First It is a variant of the K-means algorithm that places each cluster
centre aiming at maximising the cluster radius [16]. The algorithm operates in two
steps: centroid selection and cluster assignment. The centroid selection step begins
by selecting a random data point as the original cluster centre. Then, it iteratively
chooses the next centres as the data points that are farthest from the previously
selected one, until the desired number of centroids has been selected. In the cluster
assignment step, all other data points are assigned to the nearest centroid. The
computational complexity of this algorithm is �(v · k), where k represents the
number of desired clusters, making it suitable for large-scale applications.

Fast Greedy It is a bottom-up hierarchical approach that tries to optimise modu-
larity in a greedy manner [5]. At first, each node belongs to a separated community.
Then, communities are iteratively merged such that each merge is locally optimal.
The merges stop when it is infeasible to increase modularity. The computational
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complexity of the algorithm is �(e · d · log (v)), where d represents the depth of the
dendrogram describing the community structure. This algorithm faces the resolution
limit problem, caused by inefficiencies derived from merging communities with
unbalanced sizes [41].

Infomap This algorithm optimises the map equation [36] exploiting the informa-
tion-theoretic duality between the problem of data compression, and the problem of
how to extract significant patterns or structures from such data. The map equation
specifies the theoretical limit of the trajectories of a random walker on the network.
Community structure is represented through a two-level nomenclature based on
Huffman coding. The rationale behind this optimisation is that on partitions con-
taining few intercommunity paths, the walker will probably stay longer inside the
communities, leading to compact representations. The computational complexity of
the algorithm is �(e).

Label Propagation In this algorithm [34], each node is assigned one of k labels.
Then, labels are iteratively reassigned such that nodes take the most frequent label
of its neighbours synchronously. The process is repeated until each node is labelled
with the most frequent label in its neighbourhood. This algorithm is solely based on
network structure and does not require neither optimisation of an objective function
nor prior information about the communities. Although it is a fast technique, it
provides unstable results, as they depend on the initial label configuration and the
random decision of breaking ties. The computational complexity of the algorithm is
�(v + e).

Leading Eigenvector It is a top-down hierarchical approach that optimises mod-
ularity in terms of a matrix eigenspectrum [26], leading to a centrality measure
that identifies those vertices that occupy central positions within the communities to
which they belong. The algorithm starts by computing the leading eigenvector of the
modularity matrix. Then, it iteratively splits the graph into two parts to maximise
the modularity improvement based on the leading eigenvector and stops once the
modularity of the network subdivision is negative. The running time of the algorithm
is �

(
v2 + v · e

)
, or �

(
v2

)
for sparse graphs.

Louvain Algorithm It is one of the most known and easy to implement algorithms,
based on a greedy optimisation of modularity [2]. The algorithm is divided into two
steps that are iteratively performed until there are no more changes. First, each node
in the graph is assigned to a different community. For each node, it is moved to
the community for which the positive modularity gain is maximum. This process
is sequentially and repeatedly applied until modularity cannot be improved. The
second step builds a new network whose nodes are the communities found during
the first step. By definition, the number of communities decreases at each pass, thus
most of the running time is concentrated on the first iterations. The computational
time of the algorithm is �(v · log (v)).

Spinglass This algorithm aims at finding communities via a Spinglass model and
simulated annealing based on statistical physics [35]. In this model, each particle
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(i.e. node) can be in one of c spin states (i.e. the maximum number of communities),
and the interactions amongst particles (i.e. edges between nodes) define which
nodes might stay on the same state, and which are likely to have different states.
Then, the model is simulated and the final spin states of particles define the final
community partition. Note that spin states could remain empty, hence reducing
the number of found communities. Due to the nature of simulations, the algorithm
is not deterministic, but it has parameters that allow determining the sizes of the
communities to be found. The computational complexity of the algorithm for sparse
graphs is approximately �

(
v3.2

)
.

Walktrap Similarly to Infomap, this algorithm is based on random walks [33]. The
rationale is that short distance random walks tend to stay in the same community
as they are assumed to have few edges outside them. At first, all nodes belong to
different communities, and the distances between all adjacent nodes are computed.
Then, two adjacent communities are iteratively chosen and merged, updating the
corresponding distances. The output of the algorithm is a full dendrogram. The
computational complexity of the algorithm is �

(
v2 · e

)
, and �

(
v2 · log (v)

)
for

sparse graphs.

X-Means This algorithm aims at overcoming three K-means shortcomings [32]:
the scaling inefficiency, the manual definition of the number of clusters, and the
proneness to remain on local minima. It works as K-means until all instances have
been assigned to their corresponding community or cluster. Then, it attempts to
split each community into two separate communities by computing the Bayesian
information criterion (BIC) on both the original community and the two newly
created ones. In those cases the BIC for the new communities is higher than that
for the previously defined communities, the new communities are retained and the
total number of communities is increased. This process is iteratively repeated until
convergence. Once all K values are tested, the best community partition is chosen.

12.3.3 Vertex Similarity

Most community detection techniques are based on computing the similarity
amongst nodes [38]. For example, in a graph in which nodes represent posts, the
similarities amongst them could be used to group together nodes that are not only
well connected but also similar to each other. However, assessing node similarity
might not be computationally simple, and even more complex than clustering the
graph once all similarities are known.

The quality of the discovered communities might be greatly affected by the
selection of the similarity metric. Hence, such metric has to be carefully chosen.
Furthermore, as the different metrics assess node similarity from different points of
view, they could be combined to perform a more comprehensive assessment. The
Harmonic mean, which is less biased to the presence of outliers than the Arithmetic
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mean, adds a possibility for combining similarity scores. Note that for combining
the scores, they must be normalised to the same range.

Metrics for computing similarity amongst nodes can be divided into three gro-
ups [38], which are summarised in Table 12.2:

Distance/Similarity Metrics Traditionally, these metrics are based on some dis-
tance property. Distance metrics should comply with three criteria: the distance
between a node and itself is zero, distances are symmetrical and the triangle
inequality holds. Similarity metrics resulting from the adaptation of distance metrics
also comply with the three criteria. A great number of distance metrics have been
defined and used in the literature [10, 17]. Examples of these metrics include
Euclidean Distance, Manhattan Distance and Tanimoto Coefficient, amongst others.

Adjacency-Based Metrics In several environments, nodes lack of properties
that allow computing their similarity [38]. The most straightforward manner for
determining whether two nodes are similar only using adjacency information is
to analyse the overlap of their neighbourhoods. Nonetheless, correlation analyses
could also be applied to determine community structure based on adjacency infor-
mation. Examples of these metrics include [10, 17]: Jaccard Similarity, Common
Neighbours and Pearson Correlation, amongst others.

Connectivity Metrics Communities in graphs can also be defined through node
connectivity by computing the number of paths between each pair of nodes [38].
In this regard, nodes belonging to the same community should be highly connected
to each other. Connectivity metrics could be used to define the similarity amongst
nodes. For example, nodes could be regarded as similar if they are connected by a
number of paths higher than a predefined threshold, or similarity could be defined
proportionally to the number of paths connecting the nodes. However, defining the
threshold might be difficult, as its selection often involves knowing the diameter
of the graph a priori. Choosing a large threshold in relation to the diameter of
the graph might result in communities containing large portions of the graph,
whereas choosing a small threshold might split natural communities into two or
more subcommunities.

12.3.4 Quality Metrics

The criteria proposed by Leskovec et al. [20] (summarised in Table 12.1) char-
acterise the connectivity structure of a given community built on the assumption
that communities comprise sets of nodes with many inner connections and few
outer connections. Nonetheless, connectivity structure might not be the only
important characteristic of communities. In this regard, two additional functions
were considered. First, a function characterising communities’ content cohesiveness
defined as the average Cosine Similarity amongst all node pairs in the community
(named ContentCohesiveness). Second, as Twitter trending topics and Flickr photos
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are assigned to classes, the Entropy of the classes given the community assignments
was also analysed. As scores were computed for each individual community, they
were averaged to obtain the score corresponding to a given community partition. To
ensure metrics’ comparability, all results were normalised to the range [0; 1], and
adjusted so that the highest scores represent the best ones.

12.4 Experimental Evaluation

This section presents the experimental evaluation performed to assess the effective-
ness of the selected community detection algorithms over social media data, and is
organised as follows. First, Sect. 12.4.1 describes the data collections used. Then,
Sect. 12.4.2 describes the implementation details. Finally, Sect. 12.4.3 details the
graphs derived from social media used to perform the evaluation. The final goal of
this study is to provide some insights regarding the selection of both the algorithms
and the metrics for performing and assessing the community detection process.

12.4.1 Dataset

The performance of the technique was evaluated considering two real-world datasets
collected from Twitter5 [46] and Flickr6 [24]. Table 12.3 summarises the main
characteristics of both datasets. The Twitter dataset includes the content of more
than 500,000 tweets belonging to 1036 trending topics, which were manually
assigned to one of four categories: News, Ongoing Events, Memes (trending topics
triggered by viral ideas) and Commemoratives (the commemoration of a certain
person or event that is being remembered in a given day, for example birthdays or
memorials). For the purpose of the experimental evaluation, each trending topic was
regarded as a node in the graph, i.e. each node grouped the tweet set associated to
the corresponding trending topic.

The Flickr dataset comprises the metadata associated to original images from the
NUS-WIDE dataset [4]. For each photo, the dataset included information regarding
the owner, description, title, comments, tags, manually annotated labels and the
groups in which the photo was posted. Labels were considered as the category of
photos, and hence the community ground truth. Photos could be assigned to 81
different concepts (belonging to different categories such as, scene, object, event,
program, people and graphics), which were extracted from frequently used tags,
representing either general (e.g. “animal”) or specific (e.g. “dog”) concepts. Only
photos containing at least one tag or description were kept. The dataset also provides

5http://www.twitter.com/
6http://snap.stanford.edu/data/web-flickr.html.

http://www.twitter.com/
http://snap.stanford.edu/data/web-flickr.html
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Table 12.3 Data collection’s
main characteristics

(a) Twitter data collection

Number of instances 1036

Number of features 226,043

Number of classes 4

Number of following relations 251,522,840

Average number of followees 816

Average number of features per
instance

1084

Average number of instances per
class

259

(b) Flickr data collection

Number of instances 190,339

Number of features 947,829

Number of classes 81

Number of taggers 58,144

Number of commenters 569,765

Pairs of photos posted by the same
user

77,909

Pairs of photos posted by users who
are friends

8,825,738

Average number of features per
instance

5

Average number of instances per
class

1007

information regarding the topological relations between the users and their photos,
including an indicator for whether both photos were taken by the same user, and
an indicator for whether two users were socially related. For the purpose of the
experimental evaluation, each photo was considered as a node in the graph.

12.4.2 Experimental Settings

The performance of the selected community detection and clustering techniques was
evaluated for different graph sizes ranging between 50 and 1000 posts. In order to
make the results comparable, the implementations of the algorithms provided by
three widely used libraries were used: Gephi Toolkit,7 WEKA8 and Igraph.9 Both
Gephi Toolkit and WEKA are implemented in Java, whilst Igraph is available in R,
C++ and Python. For the purpose of this evaluation, the Python implementation was

7https://gephi.org.
8https://www.cs.waikato.ac.nz/ml/weka/.
9http://igraph.org/.

https://gephi.org
https://www.cs.waikato.ac.nz/ml/weka/
http://igraph.org/
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chosen. For Cobweb, EM, Farthest First and X-Means clustering algorithms, their
WEKA implementation was used. Specifically, the density-based implementations
were selected to evaluate the generated partitions in a cross-validated manner. The
graph was represented in the arff format in which each node was considered an
instance, and features also represented nodes. The value of each feature represented
the weight of the edge between the corresponding nodes. On the other hand,
for Edge Betweenness, Fast Greedy, Infomap, Label Propagation, Spinglass and
Walktrap, it was used their Igraph implementation. Finally, as regards the Louvain
algorithm, the Gephi implementation was used. The number of communities or
clusters to detect was automatically discovered in all cases. For those algorithms
returning a full dendrogram, the chosen community partition corresponded to the
one maximising modularity.

12.4.3 Graph Creation

Evaluation was performed considering the Social relationship and the combinations
of relationships obtaining the best results in [40], regarding the independent and
weighted graph derivations, which are summarised in Tables 12.4 and 12.5 for the
Twitter and Flickr datasets, respectively. Additionally, the table shows for each of
the analysed relationships the average and standard deviation of the node’s degrees
for each of the graph sizes tested. As most algorithms are designed to work with
undirected graphs, a symmetrisation strategy was applied to the directed graphs
resulting from considering the asymmetrical Social relationship. Particularly, a
simple symmetrisation in which the new adjacency matrix U can be defined as
U = A + AT was applied. As a result, in the case a pair of nodes is connected
with edges in both directions, the weight of the edge in the symmetrised graph will
correspond to the sum of the weight of the directed edges.

12.5 Experimental Results

Interestingly, not every tested algorithm was able to find a meaningful number of
communities (i.e. a number between 1 and the number of nodes) for each of the
analysed relationships, hence those results are not reported. Considering the results
obtained for each of the evaluated graph sizes, it was analysed whether the different
samples achieved similar quality; in other words, whether the algorithms behaved
stable across different graph sizes. Data normality was evaluated by performing both
the Shapiro and the Anderson–Darling tests [7]. As data was shown not to be normal,
the Kruskal–Wallis test for unrelated samples was applied to the results obtained for
each metric and analysed combinations of relations. Particularly, each of the results
obtained for a determined graph size was regarded as a sample. The confidence value
was set to 0.01. To perform the test, the null and the alternative hypothesis were
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defined. The null hypothesis stated that no difference existed amongst the results
of the different samples, i.e. the alternatives behaved stable over the different graph
sizes. On the contrary, the alternative hypothesis stated that changes in the size of
the graph caused changes in the behaviour of the algorithms. In all cases, the null
hypothesis could not be rejected, due to a p-value higher than the confidence value,
or a critical value higher than the obtained statistic value. In consequence, it could be
assumed that the algorithms did not change their behaviour as the size of the graph
changed. Hence, for clarity of presentation, the results across different graph sizes
are summarised by their mean value. The statistical invariability of results confirms
the findings in [44] that stated that the performance of the algorithms on artificial
networks is independent of the network size.

12.5.1 Evaluation of Quality Metrics

A correlation test was applied to the results obtained for all metrics to assess the
relationship between them. For all the obtained community structures, the scores
corresponding to all the metrics in Table 12.1 were computed. The correlation
between the metrics’ results was evaluated according to the definitions and methods
proposed in [7]. The normality of results was evaluated by analysing their skewness,
kurtosis, and performing both the Shapiro and the Anderson–Darling tests. As
the normality tests failed for at least one result sample, correlation results had to
be evaluated by means of non-parametric tests. Thus, correlation was measured
by means of the Spearman Rank Order correlation. The confidence value for
considering a correlation statistically significant was set to 0.05. The minimum
correlation value for two metrics to be considered highly correlated was set to 0.7.
Figure 12.1 summarises the obtained results for the Twitter dataset by depicting the
significant relations found. Interestingly, although TPR is not highly correlated with
any other metric (the highest correlation was 0.52 with the ClusteringCoefficient),
the obtained results showed that the metric has no sufficient discriminative power
amongst the different evaluated community detection alternatives. Particularly, its
standard deviation was 0.27. Consequently, TPR was not considered for assessing
the quality of communities. As the figure shows, metrics can be grouped into four
clusters, out of which a representative metric can be chosen. These results are in
agreement with those in [43], showing that although there are different quality
measures for structurally assessing the quality of communities, such definitions are
heavily correlated. Nonetheless, the results obtained for TPR, CutRatio and Density
(i.e. the representative metrics for each group) did not show statistical differences
amongst the results for the different combinations of alternatives. Consequently,
results are only reported for FlakeODF. On the other hand, no correlation was found
amongst ContentCohesiveness and Entropy. Similar results were observed for the
Flickr dataset.
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Fig. 12.1 Statistical correlation between quality assessment metrics

12.5.2 Evaluation of Community Detection Algorithms

This section presents the evaluation of the selected community detection algorithms
for the Twitter (Sect. 12.5.2.1) and Flickr (Sect. 12.5.2.2) datasets. For both datasets,
a statistical analysis was performed to determine whether the differences amongst
results were statistically significant. As data was shown not to be normal, the
Friedman test for related samples was applied to the results obtained for each
community detection algorithm and combination of relations. Particularly, the
results obtained for a determined node relationship across all community detection
algorithms were regarded as a sample. To perform the test, two hypotheses were
defined: the null and the alternative hypothesis. The null hypothesis stated that no
difference existed amongst the results of the different samples, i.e. the discovered
communities are independent from the algorithm used for discovering them, and the
observed differences are due to chance. On the contrary, the alternative hypothesis
stated that the observed differences amongst the different community structures are
incidental, and not due to chance.

12.5.2.1 Results for the Twitter Dataset

The reported results include all the community detection algorithms previously
described with the exception of Edge Betweenness as for each evaluated graph struc-
ture this algorithm required more than 2 h of execution, thereby being only suitable
for small networks, and not for real-time processing applications. Additionally, the
experimental evaluation showed that the algorithms that best scaled as the network
size increased were Louvain and X-Means. On the other hand, Infomap, Walktrap
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Fig. 12.2 Community detection results for the independent social and content views for the
Twitter dataset. (a) Social. (b) SimilarContent-0.6. (c) SharedClass. (d) Social & SimilarContent-
0.6. (e) Social & SharedClass. (f) Social & SharedClass & SharedTag & SimilarContent-0.6. (g)
Social & SharedClass & SharedTag & SimilarContent

and Spinglass did not scale well, hindering their applicability on large networks or
real-time applications. These findings are in agreement with those in [44].

Independent Social and Content Views Figure 12.2 shows the obtained results for
the different combinations of node relationships for the independent derivation of
the social graph. As it can be observed, there was no clear dominance of neither
the traditional clustering techniques nor the algorithms specifically designed for
community detection, as the quality of the obtained communities for each algorithm
varied according to the node relationships under consideration.

The highest quality communities were found for high density networks. More-
over, most algorithms did not obtain stable results across the evaluated relationships.
For example, Farthest First was amongst the best performing algorithms for Social,
but also was the worst performing one for SharedClass. Similarly, Spinglass was
one of the best performing algorithms for SharedClass, but the worst one for Social.
These results show the instability and lack of robustness of algorithms when varying
the underlying graph structure. Moreover, results exposed the sensitiveness (as
shown in Table 12.4) of algorithms to the network degree, as described in [28]. For
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example, the quality of the communities found by Spinglass and X-Means increased
as the average degree of the network increased. On the other hand, for Leading
Eigenvector the effect was the inverse, i.e. the quality of the found communities
decreased as the average node degree increased. Finally, Walktrap consistently
obtained communities of lower quality than other algorithms, independently of
network density. Label Propagation only obtained results for the combinations of
relationship with the lowest average node degree.

Interestingly, in the case of Social, several community detection algorithms found
community partitions with higher ContentCohesiveness than when considering
SharedClass, even though explicit content information was not included. Moreover,
those same algorithms obtained the highest ContentCohesivess for SimilarContent-
0.6, with competitive Entropy and FlakeODF results. These differences were
maintained when both relationships were combined. The obtained results might
also expose the redundancy of relationships, as combining either two of four
relationships obtained similar results for most algorithms. Particularly, results
were similar for Social & SharedClass (combination of two relationships) and
Social & SharedClass & SharedTag & SimilarContent-0.6 (combination of four
relationships). In those cases, all algorithms discovered partitions with low Content-
Cohesiveness even though, the individual relationships allowed discovering content
cohesive communities.

As regards the differences between the clustering and the community detection
algorithms, a curious phenomenon appeared when analysing the results for Social,
SharedClass and their combination. Whilst for Social, results did not show a clear
dominance of any type of technique, for SharedClass, the best average results were
obtained by the community detection techniques. However, when combining both
relations the tendencies were reverted, and clustering techniques obtained the best
results. This phenomenon emphasises the instability and sensitivity of algorithms.

Finally, it is worth noting that the Louvain algorithm was able to find relatively
high-quality communities across almost every analysed individual and combinations
of relationships, regardless of the density of the analysed graph. Particularly,
the performed Wilcoxon test showed with a confidence of 0.01 the statistical
superiority of Louvain regarding EM and Spinglass for the three quality metrics.
When solely considering FlakeODF and Entropy, Louvain obtained statistically
superior results than EM, Spinglass, Walktrap, Hierarchical Clusterer, Fast Greedy,
Label Propagation, X-Means and Leading Eigenvector. These results showed the
capabilities of the algorithm and its stability. Moreover, the results agree with those
in [44], which stated the superiority of the communities found by the Louvain
algorithm, especially for large graphs.

Weighted Social View Figure 12.3 shows the obtained results of the weighted
derivation of the social graph for the different combinations of node relationships.
Similarly to the results obtained for the independent graph derivation, there is no
clear dominance of any type of technique, excepting for those relations considering
SimilarContent-0.6, for which clustering algorithms consistently obtained the worst
results. Interestingly, for this graph derivation, Label Propagation was able to
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Fig. 12.3 Community detection results for the weighted social views for the Twitter dataset.
(a) Social-W-SimilarContent-0.6. (b) Social-W-SharedClass. (c) Social-W-SimilarContent-0.6 &
SharedClass. (d) Social-W-SharedClass & SimilarContent-0.6. (e) Social-W-SharedTag & Shared-
Class

find a meaningful number of communities for every analysed relation. Its results
were competitive regarding other techniques in all cases, but for the relationship
yielding the highest node average degree. These results showed the sensitivity of
the algorithm to the network degree distribution. As regard the diverse evaluated
relations, results evidenced that techniques were dominated by the information
provided by SharedClass, i.e. algorithms obtained almost equal results in every
combination of relationships including SharedClass.

EM and Fast Greedy were shown to have contrasting results. Whilst EM was
amongst the best performing techniques for Social-W-SharedTag & SharedClass
and the worst one for Social-W-SimilarContent-0.6, Fast Greedy obtained exactly
the reverse results. These results continued to expose the sensitivity of techniques
towards the underlying graph distribution. Additionally, Farthest First was shown to
improve the quality of the found communities as the density of the graph increased.
Walktrap continued to exhibit poor performance for this graph derivation. Unlike
for the independent graph derivation, the quality of the communities found by
Spinglass decreased as the node average degree increased. The results for the
Louvain algorithm continued to be the most stable ones across all relationships,
confirming the robustness of the algorithm for finding high-quality communities.
Finally, similarly as for the other graph derivation, a Wilcoxon test confirmed with a
confidence of 0.01 the superiority of Louvain regarding other evaluated algorithms.
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12.5.2.2 Results for the Flickr Dataset

Similarly as for the Twitter dataset, no results are reported for Edge Betweenness
due to the excessive execution time. Additionally, no results are reported for Coweb
as it did not allow to obtain a significant number of communities for any of the
selected combinations of relationships. As for the Twitter dataset, the algorithms that
best scaled as the network size increased were Louvain and X-Means. Moreover,
unlike for the Twitter dataset, Label Propagation obtained a meaningful number of
communities for every analysed combinations of relationships.

Independent Social and Content Views Figure 12.4 shows the obtained results for
the different combinations of node relationships for the independent derivation
of the social graph. As it can be observed, there was no clear dominance of
neither the traditional clustering techniques nor the algorithms specifically designed
for community detection, as the quality of the obtained communities for each
algorithm varied according to the node relationships under consideration. The
highest differences were observed for ContentCohesiveness, which achieved the
lowest results for the Social relationship.

Similarly as for the Twitter dataset, the best results were found for high density
networks. Nonetheless, none relationship or combination of them was able to obtain
high results for the three metrics simultaneously. For example, FlakeODF and
Entropy were high for Social, TaggedSameUser and Social & TaggedSameUser,
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Fig. 12.4 Community detection results for the independent social and content views for the Flickr
dataset. (a) Social. (b) SimilarContent-0.6. (c) TaggedSameUser. (d) Social & SimilarContent-0.6.
(e) Social & TaggedSameUser
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whilst ContentCohesiveness was high for Social & SimilarContent-0.6. Moreover,
most algorithms did not obtain stable results across the evaluated relationships. For
example, EM was amongst the best performing algorithms for TaggedSameUser
and Social & TaggedSameUser, but also was the worst performing one for the other
three combinations of relationships. Similarly, Infomap was the best performing
algorithm for SimilarContent-0.6 and Social & SimilarContent-0.6, but one of the
worst for Social & TaggedSameUser. These results show the instability and lack
of robustness of algorithms when varying the underlying graph structure. The
sensitiveness of algorithms to network degree observed for the Twitter dataset was
also observed for this dataset (as shown in Table 12.5); for example, the relative
quality of the communities found by X-Means and EM increased as the average
degree of the network increased. Interestingly, the quality of Spinglass results
changed independently of the underlying node degree.

The obtained results might also expose the redundancy of relationships, as
combining two relationships obtained similar results to those obtained for the
individual relationships for several algorithms. For example, results were similar
for Social and Social & SimilarContent-0.6, and for TaggedSameUser and Social
& TaggedSameUser. These results might imply that the characteristics of the
discovered communities are dominated by only one relationship of the pair.

As regards the differences between the clustering and the community detection
algorithms, results did not show a clear dominance of any type of technique, as both
community detection and clustering techniques achieved both high- and low-quality
results. Nonetheless, in all cases the best results were obtained by community
detection techniques (Infomap and Louvain), followed, in some cases, by clustering
techniques, whilst the worst results were obtained by clustering techniques (EM and
Hierarchical Clusterer). This phenomenon emphasises the instability and sensitivity
of algorithms. Finally, it is worth noting that the Louvain algorithm obtained the best
average results for four of the analysed individual and combinations of relationships,
regardless of the density of the analysed graph. These results continue to show the
capabilities of the algorithm and its robustness.

Weighted Social View Figure 12.5 shows the results obtained for the weighted
derivation of the social graph for the different combinations of node relationships.
Unlike the results observed for the independent graph derivation, the worst quality
communities were consistently obtained by two clustering techniques X-Means and
EM. On the other hand, the best results were obtained by community detection
techniques in all cases.

For this graph derivation, the differences of average node degree were lower
than for the independent derivation, excepting for Social-W-SimilarContent &
SimilarContent-0.6 (the relationship combination showing the highest average
node degree), whose average degree was a 98% higher than the second highest
one (Social-W-SharedClass & SimilarContent-0.6). In this regard, most of the
techniques showed stable results for four of the five combinations of relationships
analysed. Then, in the case of EM, Spinglass and X-Means, the quality of the
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Fig. 12.5 Community detection results for the weighted social views for the Flickr dataset.
(a) Social-W-SharedClass & SimilarContent-0.6. (b) Social-W-SimilarContent & SimilarContent-
0.6. (c) Social-W-TaggedSameUser & SharedClass. (d) Social-W-CommentedSameUser &
SimilarContent-0.6. (e) Social-W-SharedTag & SimilarContent-0.6

discovered communities increased when the average node degree increased, whilst
the quality of Hierarchical Clusterer, Farthest First, Infomap and Label Propagation
decreased.

The results for Louvain, Fast Greedy and Leading Eigenvector were the most
stable ones across all relationships. These results confirm the robustness of Louvain
for community detection on heterogeneous graph structures. Finally, similarly as for
the independent graph derivation, a Wilcoxon test confirmed with a confidence of
0.05 the superiority of Louvain regarding other evaluated algorithms.

12.5.3 Evaluation of Vertex Similarity Metrics

This section presents the evaluation of the selected vertex similarity metrics for the
Twitter (Sect. 12.5.3.1) and Flickr (Sect. 12.5.3.2) datasets. Similarly to the evalu-
ation of the community detection techniques, the stability of the vertex similarity
metrics across the different evaluated graph sizes was statistically analysed. As data
was shown not to be normal, the Kruskal–Wallis test for unrelated samples was
applied to the results obtained for each metric and each of the analysed combinations
of relations. The results obtained for each graph size were regarded as a sample.
The confidence value was set to 0.01. Results showed that the hypothesis that no
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difference existed amongst the results of the different samples could not be rejected,
as either the p-value was higher than the set confidence value or the critical value
was higher than the obtained statistic value. Hence, the diverse vertex similarity
metrics could be assumed to behave stable across the different graph sizes. For
clarity of presentation, the results across different graph sizes are summarised by
their mean value.

Finally, a statistical analysis was performed to determine whether the differences
amongst results were statistically significant. As data was shown not to be normal,
the Friedman test for related samples was applied to the results obtained for
each vertex similarity metric and combination of relations. Particularly, the results
obtained for a determined node relationship across all vertex similarities were
regarded as a sample. The null hypothesis stated that no difference existed amongst
the results of the different samples, i.e. discovering communities based on the full
node set yielded the same quality than iteratively extracting one node from the
set and inserting it using vertex similarity metrics. On the contrary, the alternative
hypothesis stated that inserting a node in an already computed community structure
does not lead to the same community quality than using the full node set.

12.5.3.1 Results for the Twitter Dataset

As the following subsections show, no differences were observed between the
results for the different graph derivations. This evaluation continued to expose the
redundancy amongst relationships.

Independent Social and Content Views Figure 12.6 shows the obtained results for
the different combinations of node relationships for the independent derivation of
the social graph. As it can be observed, results obtained for each vertex similarity
metric are similar to those obtained when considering all nodes in the community
detection process (named Full Communities). Interestingly, differences are only
observable after the fourth decimal place.

The biggest differences were found for SharedClass (Fig. 12.6c) and SimilarCon-
tent-0.6 (Fig. 12.6b). When considering SharedClass, the communities discovered
for the full set of nodes had higher ContentCohesiveness and Entropy than those
obtained for the vertex similarity metrics. Conversely, in the case of SimilarContent-
0.6, the ContentCohesiveness obtained for the full set of nodes was lower than that
observed for the vertex similarity metrics. Note that the highest differences were
observed for the lowest density graph. These results could imply that community
structures are very sensitive to small changes in the node set. For example, it could
occur that removing one node could alter the strength of links forcing the separation
of a community into two or more communities. Then, when the node is inserted in
the community structure, communities are not merged, altering their quality.

The results of Social & SharedClass (Fig. 12.6e), Social & SharedClass &
SharedTag & SimilarContent-0.6 (Fig. 12.6d) and Social & SharedClass & Sha-
redTag & SimilarContent (Fig. 12.6g) are identical. These results reinforce the fact
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Fig. 12.6 Vertex similarity results for the independent social and content views for the Twitter
dataset. (a) Social. (b) SimilarContent-0.6. (c) SharedClass. (d) Social & SimilarContent-0.6. (e)
Social & SharedClass. (f) Social & SharedClass & SharedTag & SimilarContent-0.6. (g) Social &
SharedClass & SharedTag & SimilarContent

that in some cases, adding more information does not imply an improvement of
results. Instead, information sources might be redundant. As observed, for low-
density graphs, S/orensen, PearsonCorrelation and their combination achieved
higher results than the other metrics.

Table 12.6 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best three results obtained for
each metric are highlighted in bold. Interestingly, in average, considering the full
node set achieved the lowest ContentCohesiveness, but the highest Entropy and
FlakeODF. Note that Harmonic obtained high results for the three evaluated
metrics, showing the highest ContentCohesivenness values.

The performed Friedman test showed with a confidence of 1.229e−07 that the
null hypothesis should be rejected, meaning that there is a difference between any
of the analysed pair of results. To discover the pairs for which a statistical difference
existed, the Wilcoxon test was applied defining the same hypotheses. Wilcoxon
results showed with a confidence of 0.05 the existence of significant differences
amongst the diverse vertex similarity metrics. For example, Cosine Similarity
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Table 12.6 Summary of vertex similarity results for the independent graph derivation of the
Twitter dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.30 0.38 0.23
Cosine 0.29 0.41 0.19

Cosine-Weighted 0.29 0.41 0.19

Euclidean 0.29 0.41 0.19

Euclidean-Weighted 0.29 0.41 0.19

Harmonic 0.31 0.48 0.20
HDI 0.29 0.41 0.19

HPI 0.29 0.41 0.19

LHN 0.29 0.41 0.19

Manhattan-Weighted 0.29 0.41 0.19

PearsonCorrelation 0.30 0.48 0.20
Sorensen 0.31 0.48 0.19

Tanimoto 0.29 0.41 0.19

Tanimoto-Weighted 0.29 0.41 0.19

results were shown to be statistically different and lower than most of those
of the other metrics. On the other hand, PearsonCorrelation and Harmonic

were shown to be statistically superior to the other metrics. Finally, no statistical
difference was found amongst the binary and weighted variations of the metrics.

Weighted Social View Figure 12.7 shows the obtained results for the different
combinations of node relationships for the weighted derivation of the social
graph. As it can be observed, the behaviour of the vertex similarity metrics
did not change regarding the other graph derivation strategy. For three combi-
nations of relationships, considering the full node set allowed to obtain higher
Entropy, and a slight improvement of ContentCohesiveness. These results also
exposed the redundancy amongst node relationships as Social-W-SharedClass
(Fig. 12.7b), Social-W-SimilarContent-0.6 & SharedClass (Fig. 12.7c), Social-W-
SharedClass & SimilarContent-0.6 (Fig. 12.9b) and Social-W-SharedTag & Shared-
Class (Fig. 12.7e) achieved similar results.

Table 12.7 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best results obtained for each
metric are in bold. Interestingly, in average, considering the full node set achieved
the lowest ContentCohesiveness but the highest Entropy. Unlike for the other graph
derivation, using the full node set did not discover the most structurally cohesive
communities. Similarly to the previous case, Harmonic was amongst the best
performing vertex similarity metrics.

The same statistical analyses performed for the independent derivation results
were performed for this graph derivation. The Friedman test showed with a
confidence of 1.049e−11 that the null hypothesis should be rejected, meaning
that there was a difference between any of the analysed pair of results. Then, the
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Fig. 12.7 Vertex similarity results for the weighted social views for the Twitter dataset.
(a) Social-W-SimilarContent-0.6. (b) Social-W-SharedClass. (c) Social-W-SimilarContent-0.6 &
SharedClass. (d) Social-W-SharedClass & SimilarContent-0.6. (e) Social-W-SharedTag & Shared-
Class

Table 12.7 Summary of vertex similarity results for the weighted graph derivation of the Twitter
dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.30 0.38 0.45
Cosine 0.31 0.39 0.28

Cosine-Weighted 0.31 0.39 0.28

Euclidean 0.32 0.40 0.29

Euclidean-Weighted 0.32 0.40 0.29

Harmonic 0.33 0.49 0.30
HDI 0.31 0.39 0.28

HPI 0.31 0.39 0.28

LHN 0.31 0.39 0.28

Manhattan-Weighted 0.32 0.40 0.29

PearsonCorrelation 0.31 0.49 0.30
Sorensen 0.31 0.49 0.30
Tanimoto 0.31 0.39 0.28

Tanimoto-Weighted 0.31 0.39 0.28
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Wilcoxon test was applied. Results showed with a confidence of 0.05 the existence
of significant differences amongst the diverse vertex similarity metrics. For example,
Cosine Similarity results were shown to be statistically different and lower than
most of those of the other metrics, whilst PearsonCorrelation and Harmonic

were shown to be statistically superior to the other metrics.

12.5.3.2 Results for the Flickr Dataset

As the following subsections show, the results for this dataset present some
differences regarding those observed for the Twitter dataset. Such differences could
be due to the intrinsic and particular characteristics of each social network under
analysis. Additionally, some differences were observed between the analysed graph
derivations.

Independent Social and Content Views Figure 12.8 shows the obtained results for
the different combinations of node relationships for the independent derivation of
the social graph. As it can be observed, in terms of FlakeODF results obtained for
each vertex similarity metric are similar to those obtained for Full Communities.
In most cases, differences are only observed after the third decimal place. Discov-
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Fig. 12.8 Vertex similarity results for the independent social and content views for the Flickr
dataset. (a) Social. (b) SimilarContent-0.6. (c) TaggedSameUser. (d) Social & SimilarContent-0.6.
(e) Social & TaggedSameUser
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ering communities for the full node set obtained the best average results for every
combination of relationships, excepting SimilarContent-0.6.

In terms of Entropy, the biggest differences were observed for SimilarContent-
0.6 (Fig. 12.8b) and Social & SimilarContent-0.6 (Fig. 12.8d). In those cases, the
best average results were obtained when considering Full Communities, followed
by the results of Euclidean-Weighted, Manhattan-Weighted and T animoto-
Weighted. As observed for the community detection algorithms, the results for
those combinations of relationships are similar, which might imply that the charac-
teristics of the discovered communities are dominated by only one relationship of
the pair. For the remaining three combinations of relationships, Full Communities

obtained the highest Entropy results, with differences up to a 71% regarding the
different similarity metrics. As regards ContentCohesiveness, for those alternatives
considering SimilarContent-0.6, Full Communities did not discover the highest
quality communities.

Table 12.8 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best results obtained for each
metric are highlighted in bold. Note that for FlakeODF average results were almost
equal for every analysed similarity metric. Interestingly, in average, considering
Full Communities achieved the lowest FlakeODF, but the highest ContentCo-
hesiveness and Entropy. These results differ from those observed for the Twitter
dataset, in which FullCommunities achieved the lowest ContentCohesiveness
and the highest FlakeODF. Moreover, unlike for the Twitter dataset, the weighted
versions of Cosine, Manhattan and Euclidean obtained higher results than
Harmonic.

Table 12.8 Summary of vertex similarity results for the independent graph derivation of the
Flickr dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.77 0.29 0.92
Cosine 0.79 0.18 0.71

Cosine-Weighted 0.80 0.19 0.72

Euclidean 0.80 0.18 0.70

Euclidean-Weighted 0.80 0.18 0.78
Harmonic 0.80 0.18 0.69

HDI 0.79 0.18 0.70

HPI 0.79 0.18 0.72

LHN 0.80 0.18 0.72

Manhattan-Weighted 0.80 0.18 0.78
PearsonCorrelation 0.80 0.18 0.69

Sorensen 0.80 0.18 0.70

Tanimoto 0.79 0.18 0.70

Tanimoto-Weighted 0.80 0.19 0.76
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The performed Friedman test showed with a confidence of 1.229e−07 that the
null hypothesis should be rejected, meaning that there is a difference between
any of the analysed pair of results. To discover the pairs for which a statistical
difference existed, the Wilcoxon test was applied defining the same hypotheses.
Wilcoxon results showed with a confidence value of 0.05 the existence of significant
differences amongst the diverse vertex similarity metrics. For example, Euclidean

results were shown to be statistically different and lower than most of those of
the other metrics, in terms of FlakeODF and ContentCohesiveness. On the other
hand, T animoto-Weighted was shown to be statistically different than most of
the other metrics in terms of Entropy. Interestingly, FullCommunities showed to
be statistically superior than several metrics, in terms of ContentCohesiveness for
HPI , LHN , Manhattan−Weighted, T animoto, Pearson and Euclidean. No
significant differences were observed in terms of FlakeODF and Entropy. Finally,
even though differences were observed for the binary and weighted variations of the
metrics, such differences were not statistically significant.

Weighted Social View Figure 12.9 shows the obtained results for the different
combinations of node relationships for the weighted derivation of the social
graph. For every combination of relationships, considering the full node set
allowed to obtain the highest Entropy results. Moreover, for every combination
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Fig. 12.9 Vertex similarity results for the weighted social views for the Flickr dataset. (a)
Social-W-SharedClass & SimilarContent-0.6. (b) Social-W-SimilarContent & SimilarContent-
0.6. (c) Social-W-TaggedSameUser & SharedClass. (d) Social-W-CommentedSameUser &
SimilarContent-0.6. (e) Social-W-SharedTag & SimilarContent-0.6
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Table 12.9 Summary of vertex similarity results for the weighted graph derivation of the Flickr
dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.77 0.56 0.89
Cosine 0.76 0.20 0.69

Cosine-Weighted 0.76 0.22 0.74

Euclidean 0.76 0.21 0.68

Euclidean-Weighted 0.76 0.21 0.85
Harmonic 0.76 0.21 0.66

HDI 0.76 0.20 0.68

HPI 0.76 0.20 0.72

LHN 0.76 0.22 0.71

Manhattan-Weighted 0.76 0.21 0.85
PearsonCorrelation 0.76 0.20 0.66

Sorensen 0.76 0.20 0.66

Tanimoto 0.76 0.20 0.68

Tanimoto-Weighted 0.76 0.21 0.82

excepting Social-W-TaggedSameUser & SimilarContent-0.6, FullCommunities

obtained the highest ContentCohesiveness, with differences up to a 300%. These
results also exposed the redundancy amongst node relationships as Social-
W-SharedTag & SimilarContent-0.6 and (Fig. 12.9e) Social-W-SharedClass &
SimilarContent-0.6 (Fig. 12.9a) obtained similar results. The same applies for
Social-W-TaggedSameUser & SimilarContent-0.6 (Fig. 12.9c) and Social-W-
CommentedSameUser & SimilarContent-0.6 (Fig. 12.9d).

Table 12.9 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best results obtained for each
metric are in bold. Similarly as for the independent graph derivation, all metrics
obtained similar average FlakeODF. However, unlike for the independent graph
derivation, Full Communities obtained the highest average results. The highest
differences were observed for ContentConhesiveness. The same statistical analyses
performed for the independent derivation results were performed for this graph
derivation. Results showed the same tendencies than for the independent graph
derivation.

12.6 Conclusions

Social networking and microblogging sites have increased their popularity in recent
years attracting millions of users, who spend an increasing amount of time on those
sites sharing personal information and making new friends. For example, sites like
Flickr, YouTube, Facebook or Twitter allow users to create content, publish photos,
comment on content other users shared, tag content and socially connect with other
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users in the form of subscriptions or friendships. Consequently, social networking
sites affect how people communicate and interact with each other.

One fundamental problem in social networks is the identification of groups of
elements (users, posts or other elements) when group membership is not explicitly
available. A group, or community, can be defined as a set of elements that interact
more frequently or are more similar to other community members than to outsiders.
Community detection has proven to be valuable in diverse domains such as biology,
social sciences and bibliometrics. As a result, several community detection methods
have been developed based on techniques from a variety of disciplines. Given the
heterogeneity of real-world networks, one question that arises is how to effectively
evaluate the algorithms.

Motivated by the lack of studies analysing the problem of community detection
over real-world social media networks, this chapter focused on the analysis of
the performance of community detection algorithms over such type of networks
(particularly over Twitter and Flickr) including the effect of diverse metrics for
assessing community membership. To that end, it was also explored how to
quantify the structural properties of the discovered communities in terms of several
quality metrics. The obtained results exposed the sensitivity of community detection
algorithms to the density and structure of the underlying graph distribution, and
hence their lack of robustness. Results showed that the Louvain algorithm achieved
high-quality communities for almost every analysed combination of relationships,
reinforcing its capabilities and stability for accurately discovering community
structures, as claimed by [44]. Moreover, the study showed the relation and
dependence of several quality metrics. Finally, as regards community membership,
most of the analysed metrics obtained similar results. Nonetheless, those results
varied according to the analysed dataset, highlighting the importance of considering
the intrinsic characteristics of the social network under analysis for the community
detection process.
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