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Abstract—Since their beginnings, social networks
have affected the way people communicate and interact
with each other. Nowadays, user interactions range
from social relations to posting and reading activities,
leading to the existence of multiple and complementary
information sources or dimensions for characterising
user behaviour. The task of community detection
could benefit from integrating those multiple sources.
However, most techniques disregard the effect of
information aggregation, and continue to focus only
on one aspect: network topology. This paper aims
at providing some insights on how to integrate the
multiple and heterogeneous social media information
sources characterising user activities and behaviour to
optimise the quality of found communities. To that
end, diverse consensus strategies to extend techniques
designed for a unique information source to multi-
dimensional networks are presented and analysed.
Experimental evaluation confirmed the benefits of
using consensus strategies for leveraging on multiple
data dimensions in terms of community quality.
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I. Introduction

Social networking and micro-blogging sites have in-
creased their popularity in recent years attracting millions
of users, who spend an increasingly amount of time on
those sites sharing personal information and making new
friends. For example, sites like Flickr, YouTube, Facebook
or Twitter allow users to create content, publish photos,
comment on content other users shared, tag content, and
socially connect with other users in the form of subscrip-
tions or friendships. Consequently, social networking sites
affect how people communicate and interact. Unlike in
the physical world, in social media people have a greater
freedom to connect with a wider range of individuals
for multiple reasons. In this context, social networks can
be defined as a set of socially relevant nodes connected
by one or more relations. Nodes are not only limited to
representing people. Instead, they might also represent
other entities such as social posts, tweets, geographical
places or Web pages, amongst other possibilities.
The pervasive usage of social media offers research

opportunities for analysing user behaviour and how users

interact with their friends [17]. These research opportun-
ities are not only related to computer science, but also
to physics, economics, behavioural science and business
marketing. One fundamental problem in social networks is
identifying groups or communities of elements, when there
is no explicit group information available [17]. Communit-
ies can be defined as sets of elements (i.e. users, posts
or other elements) that interact more frequently or share
more similarity with elements within their own community
than with those outside of it. Community detection has
been proved useful in diverse domains such as biology and
social sciences, as they can be used for further analysis as
visualisation, group profiling or relational learning.
Several techniques have been proposed to address the

problem of detecting communities in networked data.
However, most of them only focus on one individual aspect
of users’ relationships, whilst users interact or connect
with others for many diverse reasons. For example, in
Twitter, users might connect with others because they
have the same interests, because they had retweeted or
marked as favourite the same tweets, or because they
share common friends. Additionally, users might post on
the same topic or use the same hashtags. In this context,
there are other sources or dimensions of information that
might implicitly define connections between users in social
media. Then, different networks can be built based on each
form of information source or dimension, which combined
result in a rich multi-dimensional network representing
user activities and interactions.
When analysing a multi-dimensional network with het-

erogeneous information, one information source might be
insufficient for accurately capturing community structure.
For instance, in Twitter, social relations might be ex-
tremely sparse and two users might belong to the same
community even if they do not follow each other. Relations
can also be noisy since, as it is easier to connect with other
users online than in the real physical world, users might
have thousands of online friends. This situation could
hinder the correct identification of the communities users
belong to, if only friendship interactions are considered.
On the other hand, other users might have a low number
of friends, but frequently engage in other activities such as
posting or commenting content, which could lead to valu-
able information for community detection. Nonetheless,978-1-5386-3057-0/17/$31.00 c©2017 IEEE



social media content might be topically diverse and noisy
for conveying valuable topic-based relationships. Thus,
integrating multiple information sources could help to
overcome the problems caused by incomplete and noisy
information in each dimension, as well as obtaining more
accurate and reliable community partitions. However, the
combination of multiple and possible heterogeneous data
dimensions (or views) poses new challenges. For example,
how to fuse the different informational aspects provided
by each dimension for performing an integrated analysis.
Considering the increasing amount of available inform-

ation in social networks and the necessity of integrating
such heterogeneous data, this paper addresses two chal-
lenges. First, the definition and extraction of multiple
sources of information regarding user interactions and
activities that can be inferred from social media data.
Second, based on a multi-dimensional graph, this study
presents and analyses four possible integration strategies
for extending community detection techniques designed for
a unique data dimension to leverage on multi-dimensional
networks. The strategies are based on integrating the com-
munity structures found for each individual dimension into
a single consensual community partition, reflecting the
information provided by each dimension. The final goal of
this study is to provide some insights on how to integrate
the diverse information sources and user interactions for
improving the quality of hidden community structures
that are shared by the heterogeneous interactions.
The rest of this paper is organised as follows. Section II

discusses related research. Section III defines the nature of
the analysed dimensions in a multi-dimensional graph and
presents the proposed consensus alternatives. Section IV
describes the experimental settings and the obtained res-
ults. Finally, Section V summarises the conclusions drawn
from this study and presents future lines of work.

II. Related Work
Social networks are usually represented by graphs com-

prising a set of nodes connected through links or edges.
Such edges can be undirected (as friendships on Face-
book) or directed (as the Followee/Follower relations on
Twitter or Instagram). Communities can be regarded as
potentially overlapping groups of nodes that are densely
connected within the community, but sparsely connected
with nodes outside of it. The goal of community detection
techniques (also referred as graph clustering techniques)
is to divide the nodes into groups (i.e. communities), such
that the nodes in a community are similar or connected
in a pre-defined sense [15]. Nonetheless, not every graph
presents a natural community structure. For example, in
a graph in which edges are evenly distributed over the set
of nodes, the resulting clustering will be rather arbitrary.
Recently, the efforts of community detection techniques

have been focused on addressing the challenges posed by
the heterogeneous nature of social media by combining
diverse social networks [12], or information sources, such

as social and content information [21, 22, 19] or social,
content and user similarity [14, 17]. Interestingly, in most
approaches, all data dimensions are reduced to one di-
mension, hence merging the heterogeneous information
sources into a unique graph, which can be problematic
if dimensions are not comparable or have different relative
importance. Only a few approaches [18, 3, 11] have lever-
aged on consensus techniques, which were not necessarily
applied to multi-dimensional community detection.
Yang et al. [21] modelled the probabilities of nodes of

being linked using conditional and content discriminat-
ive models for reducing the impact of irrelevant content
features. Experimental evaluation was based on citation
networks, where nodes corresponded to scientific articles,
edges to citations and keywords described the content.
Similarly, Zhang et al. [22] proposed a probabilistic model
for combining topological information with node attrib-
utes. Experimental evaluation was based on Twitter and
Facebook datasets from SNAP1. Hashtags and mentions
were selected as the content features for Twitter, whilst
the information in user profiles (e.g. hometown, birthday,
political associations) was selected for Facebook. Optimisa-
tion was performed by means of Expectation Maximisa-
tion, which improved state-of-the-art techniques based on
social links, content or a combination of both information
sources.
Tommasel and Godoy [19] studied how to integrate

multiple social and content-based information sources for
discovering posts communities. In addition, the authors
proposed alternatives for integrating edge directionality
to the analysis. The considered content-based dimensions
included tagging behaviour, posts’ topics and posts’ sim-
ilarity. Content relations were used to weight the existing
social relations, or to define other independent relations
between posts. Results based on Twitter demonstrated
that each information source offers complementary views,
whose relevance depends on the characteristics of the net-
working site under analysis. Furthermore, results showed
that naïvely combining information sources and edge se-
mantics could lead to low quality results, implying that
the relations have to be carefully leveraged to achieve a
positive effect on community quality.
Tang et al. [17] discovered user communities by in-

tegrating multiple information sources in a joint optim-
isation problem. Social information was combined with
the concatenation of all content-based sources. Evaluation
was based on tags and comments from BlogCatalog and
Flickr. Nodes represented users connected by friendship
links. Results showed that the integration of multiple data
sources introduced noise and redundancies, hence reducing
the quality of communities, and increasing complexity.
Pei et al. [14] grouped users by combining topological

information, content-based features, message similarity
and user interactions in a non-negative matrix factor-

1http://snap.stanford.edu/data/



isation problem. Experimental evaluation was based on
two small Twitter datasets comprising politicians. Unlike
the previously presented works, results showed that social
information performed better than content. Hence, the
authors claimed that social relations are capable of accur-
ately capturing user interests, whilst content information
introduces noise. Nonetheless, as the evaluation was based
on both social and content cohesive datasets, there is no
guarantee that the assumptions would held on heterogen-
eous datasets where relations might respond to diverse and
perhaps contradictory reasons.
Traditionally, consensus techniques are used for combin-

ing the results of several algorithms applied to the same
network to improve individual results. In this context,
Mathias et al. [11] proposed a genetic-based consensus al-
gorithm for community detection in direct networks using
modularity as the fitness function. The starting population
of the algorithm is the communities found by diverse
alternatives of Label Propagation. Then, populations are
evolved until the modularisation criterion was met. Ex-
perimental evaluation based on the connections between
republican and democrat blogs during 2004 showed that
the approach was able to improve the results of Label
Propagation and Infomap.
Burgess et al. [3] added information from missing edges

to improve the quality of communities by combining a
consensus clustering algorithm with link prediction. The
proposed technique uses link prediction to build a prob-
abilistic distribution over inferred edges. Then, it cre-
ates a set of networks from the built distribution, which
are partitioned into communities by means of traditional
community detection algorithms. Finally, the obtained
partitions are aggregated into a network, in which the edge
weights corresponded to the normalised frequency of the
occasions in which two nodes belonged to the same com-
munity. The final communities are obtained by removing
low confidence edges. Experimental evaluation based on a
Facebook dataset from SNAP showed improvements over
state-of-the-art techniques, at the expense of increasing
the computational time.
Jin et al. [6] proposed a clustering fusion algorithm

for detecting user communities in time evolving networks.
To describe the time evolving characteristics of networks,
the authors used snapshots to represent the network at a
specific time. Nonetheless, the authors only considered the
explicit social data for establishing users’ relations. The
algorithm comprises two steps. First, for each snapshot
a base clustering is performed to obtain the clustering
for that timestamps. Then, the obtained clusterings are
merged to obtain the final clustering. Experimental eval-
uation based on a Google+ dataset showed that although
their algorithm obtained better results than the selected
baselines, it was more time consuming.
Finally, closely related to this study and unlike previous

works, Tang et al. [18] analysed four consensus strategies
for discovering user communities in heterogeneous net-

works. First, all dimensions were integrated into one by
averaging the individual weights. Second, the objective
function was simultaneously optimised over all dimensions.
Third, features from each dimension were extracted and
then PCA was applied to capture the principal patterns
across all dimensions. Fourth, multiple clustering results
were combined into a single consensual clustering. Exper-
imental evaluation was based on a YouTube dataset that
included five data dimensions: the users’ social relations,
friends-of-friends, co-subscription, co-subscribed and co-
favourite. Results showed that independently considering
each data dimension achieved better results than col-
lapsing all dimensions into a unique graph, but worse
results than the other integration strategies.

III. Consensus Community Detection based on
Heterogeneous Social Information

To apply a community detection algorithm, the inform-
ation on which the underlying graph structure is going
to be based on has to be defined. Multiple and diverse
information sources can be extracted from social media
data, and hence multiple graph structures can be defined.
Nodes might not only represent real people, but also other
entities such as neighbourhoods, Web pages or tweets,
amongst others depending on the task to perform [10].
For example, if the goal of finding communities is to
predict new relations between users or to measure the
influence users have on their neighbourhood [20], the nodes
in the graph might represent actual users of the network.
Conversely, if the goal is to discover relations between tags
in a folksonomy [13], nodes could represent tags. The goal
of this work is to detect communities of related posts in
social media, hence, as in [1, 21], each node in the graph
represents a social post. Once communities are found, they
can be integrated in diverse learning tasks such as topic
detection, text classification or clustering, link prediction,
or even feature selection.
In social media networks, users can not only establish

social relations with other users, but also, create content.
Consequently, social media data can be regarded as an
heterogeneous network comprising not only information
in the form of social (i.e. friendship or followee/follower)
relationships, but also other information sources repres-
enting other types of relations between users or posts. For
example, showing interest in a post by bookmarking it or
the exchange of comments and tags could denote other
sources of relationships between users. These activities
provide different points of view of the same network, hence
being useful for finding the community structure of a
network. Nonetheless, such different types of relations need
to be adequately leveraged when representing them in the
graph. In this context, Section III-A presents the diverse
node relations that could be considered when creating
the social graph representation of the network. Then,
Section III-B defines how to represent the social graph
structure once all node relations are defined.



A. Graph Extraction

Most community detection techniques are purely based
on the social relations amongst the elements in the un-
derlying social media network. However, in the context
of social media data, both the social relations between
users and the characteristics of the published content are
important for improving the quality of the discovered
communities. Hence, besides the relations between posts
derived from the actual social relations between their
authors (i.e. two posts are socially related if their are au-
thors are socially connected), posts’ content resemblance
or common categories (in case they are available) could
also help to establish relations between them.
Additionally, the specific characteristics and metadata

from each micro-blogging site could be exploited for dis-
covering other meaningful relations between posts. For
example, the usage of hashtags is encouraged in Twitter,
Instagram and Facebook to aid in the search of messages
of a specific theme or content. Then, posts containing the
same (or associated) hashtags could be assumed to be
topically related. As explained, social and content-based
relations offer complementary data views, thus, no indi-
vidual relation alone might be sufficient for determining
high quality community partitions [17]. For instance, social
information might be sparse and noisy, whilst content
information might be irrelevant or redundant.
Content-based relations could be used either to reinforce

the social relations already found amongst posts or to
establish new relations amongst posts that are not socially
connected. In the former case (weighted graph derivation),
the graph only includes edges representing the social
relations between nodes, whose relevance is given by the
content features. Consequently, the quality of the social
ties between nodes depends on the adequate definition of
the content features in order to fully exploit all information
sources. In the latter case (independent graph derivation),
social and content relations are assumed to be independent
and hence, edges in the graph represent either social or
content links. As a result, two nodes might be connected
even if there is no explicit social connection between
them. For the purpose of this work, several content-based
relations are defined based on the information available on
social networking sites:

• Shared Tags. An edge between two nodes exists if
they share any tag (or hashtag). The weight of the edge
is measured as the percentage of shared tags amongst the
total number of different tags comprised by the two posts.

• Shared Class. An edge between two nodes exists if they
belong to the same class. All edges have a weight of 1. In
those cases in which categories are organised in hierarchies
or taxonomies (as in the Open Directory Project2), the
weight of edges could be computed as the distance between
both categories.

2http://www.dmoz.org/

• Similar Content. Measures the content resemblance
of two nodes. A minimum similarity threshold might be
imposed to avoid creating a complete dense graph. Thus,
only edges with similarity above a certain threshold would
be added to the graph. Diverse text similarity metrics
could be adopted to define the nature and strength of
similarities, for example, it could be expressed by simply
computing the percentage of shared terms between the two
nodes, or by computing their Cosine Similarity.
By definition, all content-based relations are symmetric,

i.e. they do not have directionality. However, regarding the
Follower/Followee relationship in Twitter, the fact that
user A follows user B does not imply that user B also
follows user A. The same applies to the social relations in
Instagram. Whilst the diverse social networks exhibit dif-
ferent reciprocity levels, most community detection tech-
niques only leverage on undirected (and perhaps weighted)
graphs. It is worth noting that developing community de-
tection techniques for directed graphs might be a difficult
task [5], and that several concepts that are theoretically
well defined for undirected graphs have not been yet
extended to directed ones [9]. Hence, for the purpose of
this work, the directionality of social relations was ignored,
transforming the directed graph in an undirected one in
order to employ techniques already defined for undirected
graphs. This applied transformation is one of the simplest
and most commonly symmetrisation techniques.
Once all relations amongst nodes are defined, they can

be represented in a simple (or unique) graph or a multi-
graph. The simple graph collapses multiple (and possibly
heterogeneous) relations between two nodes into a unique
edge, i.e. if multiple relations exists between two nodes,
such relations are collapsed into a unique edge. This
alternative ignores the differences amongst heterogeneous
spaces. On the other hand, in a multi-graph, each relation
between nodes is represented as a separated dimension of
the same graph. This last representation allows to treat
dimensions separately, allowing to individually optimise
the community structure of each particular dimension. For
the purpose of this work, the multi-graph representation
was selected.

B. Finding Communities in a Multi-dimensional Graph
Traditional community detection techniques are de-

signed for assessing only one dimension of the graph at
the time, or the simple and collapsed representation of
the graph dimensions. However, as previously mentioned,
such representation collapses possibly heterogeneous in-
formation into a unique and homogeneous space, ignoring
the differences amongst such dimensions. An alternative
to cope with this limitation is to consider each graph
dimension as a separated graph and discovering the com-
munity distribution for each of them separately. Then, the
obtained results could be aggregated by means of a cluster
ensemble strategy. Cluster ensemble or consensus cluster-
ing refers to the situation in which multiple clusterings, or
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Figure 1: Consensus Community Detection

community partitions, have been obtained and it is desired
to find a single clustering or community partition, which
is a better representative of the individual community
structures [7]. Figure 1 depicts an example of applying
consensus techniques to the communities obtained for each
individual dimension of the defined multi-graph in order
to obtain a final community partition that integrates the
information of all information sources.
Several alternatives have been proposed in the literature

for combining a given ensemble of community partitions to
produce the final community partition [16, 4], which have
not yet been applied to the context of social media data.

This work analyses four consensus alternatives: instance-
based, cluster-based, hybrid-bipartite and metric-based.
The focus of the instance-based, cluster-based and hybrid-
bipartite alternatives is on building an intermediate rep-
resentation comprising all the partitions found, and then
applying once again a clustering or community detection
technique over the newly created graph. In general, the
alternatives do not require access to the original graph
features nor the technique that determined such partitions.
In all cases, once the intermediate representation is built,
it is fed to the selected community detection algorithm for
obtaining the final community partition.

Instance-based Consensus: The instance-based alternat-
ive [16] builds a graph that models the pairwise similarity
amongst the original data instances. Each data instance
is represented as a node in the new graph. Information
regarding the similarity amongst communities is ignored.
The edges between nodes are weighted proportionally to
how frequently the two nodes are located in the same
community. Particularly, three alternatives for weighting
the edges are proposed. First, the number of shared com-
munities (named instance-based). Second, the percentage
of shared communities amongst the total number of com-
munities (named instance-based-%). Third, the number of
shared communities scaled by the nodes’ content similarity
(named instance-based-content). Note that whilst the first
and second alternatives are only based on the structure of
the community partitions, the third alternative includes
information regarding the content of nodes. Once the
graph is built, the partition resulting from that graph can
be regarded as the final community partition.

Cluster-based Consensus: The cluster-based alternat-
ive [16] builds a graph that models the correspondence, i.e.
the similarity, amongst different communities in a given
ensemble. Each community in each partition is repres-
ented as a node in the new graph. The edges between
nodes are weighted according to the Jaccard Similarity,
which is computed considering the data instances in each
community. Once that newly created graph is partitioned,
the final community partition is obtained as follows. First,
each group of communities represents a meta-community.
Each original data instance is assumed to be associ-
ated to a meta-community if such meta-community in-
cludes a community the data instance belongs to. Note
that an instance might be associated with several meta-
communities. In such cases, an instance is assigned to the
meta-community to which it is most frequently associated.
This strategy assumes that there exists a structural cor-
respondence amongst the different community partitions
found in the ensemble [4], i.e. the different partitions show
some degree of similarity. This assumption might affect
the quality of the resulting communities in those cases in
which there is no such structural correspondence.

Hybrid-bipartite Consensus: The hybrid-bipartite al-
ternative [4] creates a bipartite graph, in which nodes
represent both the original data instances and the com-



Table I: Twitter Data Collection Main Characteristics
Number of Instances 1,036
Number of Features 226,043
Number of Classes 4

Number of Following Relations 251,522,840
Average number of Followees 816

Average number of Features per Instance 1084
Average number of Instances per Class 259

munities. As this graph is intended to be bipartite, edges
only connect nodes representing data instances with nodes
representing communities, according to whether the data
instance is included in the community. All edges have
weight 1. This alternative simultaneously considers the
instance and community similarity when obtaining the
final community distribution.

Metric-based Consensus: The metric-based alternative
does not actually combine the different partitions. Instead,
it assesses the quality of the different partitions in terms
of a quality metric. Then, the partition achieving the
highest quality results is selected as the final partition.
Particularly, quality is assessed by two metrics. First,
betweenness centrality (named metric-based-betweenness).
Second, the average content similarity of communities
(named metric-based-content).

IV. Experimental Evaluation
This section presents the experimental evaluation per-

formed to assess the effectiveness of the proposed approach
for finding communities in heterogeneous social media
data, and is organised as follows. Section IV-A presents
the data collection used. Section IV-B presents imple-
mentation details, and the metrics used for evaluating
the effectiveness of the different alternatives. Finally, Sec-
tion IV-C presents the results derived from the performed
experimental evaluation.

A. Data Collection
The performance of the technique was evaluated con-

sidering a real-world dataset collected from Twitter3 [23].
It included the content of more than 500, 000 tweets
belonging to 1, 036 trending topics, which were manually
assigned to one of four categories: News, Ongoing Events,
Memes (trending topics were triggered by viral ideas) and
Commemoratives (the commemoration of a certain person
or event that is being remembered in a given day, for
example birthdays or memorials). Table I summarises the
main characteristics of the dataset. For the purpose of the
experimental evaluation, each trending topic was regarded
as a node in the graph, i.e. each node grouped the tweet
set associated to the corresponding trending topic.

B. Experimental Settings
The Java programming language was chosen for im-

plementing the approach. Communities were found by
the Gephi4 implementation of the Louvain algorithm [2].

3http://www.twitter.com/
4http://gephi.github.io/

Table II: Evaluated Combinations of Social and
Content-based Relationships

Independent Graph Derivation
Social & SimilarContent-0.6
Social & SharedClass
Social & SharedClass & SharedTag & SimilarContent-0.6
Social & SharedClass & SharedTag & SimilarContent

Weighted Graph Derivation
Social-W-SimilarContent-0.6 & SharedClass
Social-W-SharedClass & SimilarContent-0.6
Social-W-SharedTag & SharedClass

Nonetheless, both the graph representation model and
consensus strategies can be used in combination with
any other community detection algorithm or technique.
Evaluation was performed based on the diverse combina-
tions of the social and content-based relations presented
in Section III. A social relation (named Social) between
two nodes was established if the authors of the tweets of a
node followed authors of the other node. Additionally, two
variations of the SimilarContent relation were defined: a
variation that created edges between every pair of nodes
with a similarity greater than 0 (named SimilarContent),
and one that imposed a minimum similarity of 0.6 for
connecting two nodes (named SimilarContent-0.6 ). The
chosen combinations correspond to the ones obtaining the
best results in terms of a collapsed graph representa-
tion [19]. The selected combinations of social and content-
based relations were evaluated in the context of two experi-
mental settings. First, a setting in which content and social
relations are independently considered, i.e. relationships
between nodes can represent either social or content-based
relations. Second, a setting in which only social relations
between posts are established, and the content-based in-
formation is used to determine the importance of such
relations. Table II summarises the evaluated combinations
of relationships corresponding to either the independent or
weighted graph derivations. The results of combining the
multi-graph representation with consensus strategies for
accurately finding community partitions are compared to
those obtained for a collapsed representation of the social
graph.
To assess whether the graph size has an impact on the

quality of the communities discovered by the proposed
alternatives, different graphs sizes (ranging between 50
and 1, 000 posts) were considered in the experimental
evaluation. For each graph size, five random partitions
were generated.
The quality of the discovered community partitions

was evaluated by three scoring functions. First, as com-
munities are built on the assumption that they comprise
sets of nodes with many inner connections and few outer
connections, Flake-ODF (Out Degree Fraction) Leskovec
et al. [8], which is a function characterising community
connectivity structure. Second, a function characterising
the content cohesiveness of communities, i.e. the average
Cosine Similarity between all node pairs in the com-



munity (named ContentCohesiveness). Third, as the selec-
ted dataset includes class assignments for each post (i.e.
the class assigned to each trending topic), the Entropy of
classes given the community assignments. As scores were
individually computed for each discovered community,
they were averaged to obtain the score corresponding to
a given community partition. To ensure metrics’ compar-
ability, all results were normalised to the range [0; 1], and
adjusted so that the highest scores represent the best ones.

C. Experimental Results
Considering the results obtained for each of the evalu-

ated graph sizes, it was analysed whether the proposed re-
lationships and symmetrisation strategies behaved stable
across such sizes. As data did not follow a normal dis-
tribution, the Kruskall-Wallis test for unrelated samples
was applied to each metric’s results. The confidence value
was set to 0.05. To perform the tests, the null and the
alternative hypotheses were defined. The null hypothesis
stated that no difference existed amongst the results of the
different samples, i.e. the alternatives behaved stable over
the different graph sizes. On the contrary, the alternative
hypothesis stated that changes in the graph size caused
changes in the behaviour of the alternatives. As in all
cases the p-value was higher than the confidence value,
the null hypothesis could not be rejected. Thus, the results
obtained for the different graph sizes can be summarised
by their mean values.
Figures 2 and 3 present the obtained results grouped by

the graph derivation analysed and the selected combin-
ations of relationships. In the figures, collapsed-relation-
under-analysis represents the results obtained for the cor-
responding combination of relationships when considering
a collapsed graph representation. It is worth noting that
for some combinations, not every consensus alternative
found a meaningful number of communities, i.e. a number
between 1 and the total number of analysed nodes. Hence,
those results are not reported. For every combination
of relationships tested, the diverse consensus strategies
have differentiated effects over the evaluation metrics.
Section IV-C1 presents the results for the independent
graph derivation, whilst Section IV-C2 for the weighted
graph derivation.

1) Independent Social and Content Views: When con-
sidering the combination of Social & SimilarContent-
0.6 (Figure 2a) none of the consensus alternatives was
able to improve the Flake-ODF results of considering the
collapsed graph representation, meaning that the found
communities had a higher fraction of nodes having more
edges towards nodes outside the community than to nodes
inside it. In other words, the found communities were not
highly separated. Nonetheless, in all cases, the consensus
strategies improved the quality of communities regarding
Entropy and ContentCohesiveness. As a result, finding the
independent community structure for each of the relations
and then combining them, allowed to adequately leverage
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Figure 2: Evaluation Results - Independent Social and
Content Views
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Figure 3: Evaluation Results - Weighted Social View

on the content-based relations to increase the content
relatedness of posts inside the communities.
Interestingly, metric-based-betweenness achieved better

ContentCohesiveness results than the other alternatives
(with the exception of metric-based-content), showing that
it is not necessary to explicitly assess the content related-
ness of communities to find content cohesive communities.
The cluster-based and instance-based strategies weighting
the edges according to the absolute and average number
of shared communities obtained the same quality results,
which worsened when scaling those weights according to
the content similarity of nodes. In this case, the con-



tent quality of communities was not improved regarding
that of considering the collapsed graph. Finally, hybrid-
bipartite obtained the worst results, showing that it is not
only important to adequately choose the node relations
to consider, but also to adequately combine the found
community structures to optimise community quality.
As regards the combination of Social & SharedClass

(Figure 2b), the consensus alternatives were not able to
improve the community quality obtained for the collapsed
graph representation, regarding neither Flake-ODF nor
Entropy. However, they were able to improve Content-
Cohesiveness. Similarly to the previous case, the best
overall results were obtained with the metric-based con-
sensus alternatives, even when failing to find the most
content cohesive communities. The results obtained for
this particular combination of relations reinforced the
complementary nature of the diverse information sources.
As applying consensus strategies to communities found
by independent relations achieved worse results than their
collapsed graph representation, the information provided
by each independent relation might not be enough for un-
covering the community structure. Considering the nature
of social relations between users, this could mean that
users socially interact with others who do not necessarily
posts regarding the same topics, and that not every pair
of users posting regarding a particular topic is socially
related. In turn, these individual relations could lead to
sparse and noisy graphs, thus hindering the accurate dis-
covery of communities, as stated in [17]. This is highlighted
by the fact that cluster-based consensus was unable to
find a meaningful number of communities, highlighting
the difficulty of finding communities for this particular
combination of relations.
Even when assessing the content information of com-

munities in the consensus strategies, their final Content-
Cohesiveness was lower than when explicitly considering
content as a relation. Nonetheless, in both cases, Entropy
was relatively high. This could imply that whilst the
content of a post is related to its class, the class of a post is
not sufficient to determine its content. Particularly, posts
are divided into four categories (News, Commemoratives,
Memes and Ongoing Events) that do not actually repres-
ent posts’ topics, i.e, two post could belong to the same
category but contain unrelated content.
As it can be observed in Figure 2d, for Social &

SharedClass & SharedTag & SimilarContent-0.6, results
are similar as those obtained for Social & SimilarContent-
0.6 (Figure 2a). In both cases the metric-based strategies
found highest quality communities, which improved the
Entropy and ContentCohesiveness of the communities
found with the collapsed graph. Similarly, hybrid-bipartite
consensus obtained the worst results.
When comparing the results obtained with the col-

lapsed representations of Social & SimilarContent-0.6
(Figure 2a) and Social & SharedClass & SharedTag &
SimilarContent-0.6 (Figure 2d), it is observed that the

latter allowed to find communities with better Flake-
ODF and Entropy, whilst maintaining their ContentCo-
hesiveness. In other words, adding more relations to the
collapsed graph allowed to improve communities’ quality.
However, when comparing the results obtained for the
different consensus strategies it is observed that those
based on the former combination allowed to obtained com-
munities of higher quality than when based on the latter.
This could respond to two different situations. First, the
consensus alternatives were unable to leverage on all the
information provided by every analysed relation. Second,
the individual relations provided noisy information that
increased the difficulty of the community detection pro-
cess. In any case, these results emphasise the importance
of adequately choosing the relations to consider, and how
choosing noisy, redundant or even contradictory relations
could affect the outcome of the techniques.
Even though Social & SharedClass & SharedTag & Sim-

ilarContent (Figure 2c) only differs from the previously
analysed relation in the threshold imposed for the Simil-
arContent relation, its results were more similar to those
obtained for Social & SharedClass (Figure 2b) than those
of Social & SharedClass & SharedTag & SimilarContent-
0.6 (Figure 2d). The tendency of the consensus strategies
was the same as for the other relations as the best results
were obtained with the metric-based alternatives and the
worst ones with the hybrid-bipartite consensus.
Although including SimilarContent improved the Con-

tentCohesiveness of communities, the improvements were
lower than for SimilarContent-0.6. These results reinforce
the fact that content-based relations could also introduce
noise if not carefully analysed, and hence highlighted the
importance of imposing a minimum threshold of similar-
ity for regarding two nodes as content-related. However,
changing the threshold of SimilarContent allowed to find
communities with higher Flake-ODF than when consider-
ing Social & SharedClass & SharedTag & SimilarContent-
0.6 (Figure 2d). When comparing the results to those of
Social & SharedClass (Figure 2b), the addition of more
relations to analyse to the consensus strategies did not lead
to better Entropy results. This situation might imply that
tag and indiscriminate content information can misguide
the algorithm in finding communities of posts belonging
to the same category.

2) Weighted Social View: Figure 3a depicts results
for the combination of Social-W-SimilarContent-0.6 &
SharedClass. As the Figure shows, the cluster-based con-
sensus strategy improved the Flake-ODF of communities.
With respect to the ContentCohesiveness obtained for
the collapsed representation, its results were improved by
every consensus strategy. However, none of the consensus
alternatives was able to improve the Entropy of communit-
ies. Similarly to the previous cases, metric-based consensus
obtained the best overall results.
The results of the combination Social-W-SharedClass &

SimilarContent-0.6 (Figure 3b) are the most representat-



ive of the importance of choosing both the adequate node
relations, and whether to consider the collapsed graph
representation or use consensus to combine the diverse
relationships. Both the collapsed graph representation
and the diverse consensus strategies achieved maximum
Entropy. On the contrary, most of the consensus strategies
obtained close to zero results for Flake-ODF, whilst the
collapsed representation obtained the optimal ones. Note
that, as in the previously analysed combinations of rela-
tions, only metric-based consensus was able to find high
content cohesive communities.
Finally, Figure 3c presents the results obtained for

Social-W-SharedTag & SharedClass. Although the col-
lapsed relations lead to similar results than the other
analysed relations regarding both Flake-ODF and En-
tropy, the consensus strategies obtained the worst results
in comparison to those obtained for the other combinations
of relationships. These results might indicate the fact that
these specific individual relations do not provide enough
information for the community detection algorithm, hence
leading to the discovery of low quality communities.
From the results of Social-W-SharedClass &

SimilarContent-0.6 (Figure 3b) and Social-W-SharedTag
& SharedClass (Figure 3c), it can be inferred than when
integrated into the same graph, the information provided
by the diverse relations helps to create a cohesive and
complementary graph by strengthening or creating new
links between nodes. On the other hand, when analysing
each relation individually, the nature of each of them
might lead to sparse graphs or even completely different
graph structures that might mislead the consensus
algorithm, hence resulting in low quality communities.

D. Summary of Results
From the performed analysis of the results obtained

for each of the diverse combinations of relationships
it can be inferred the effect that choosing the wrong
consensus strategy can have over the characteristics of
the discovered communities. Particularly, in all cases the
highest quality communities were obtained when using
metric-based consensus strategies, whilst hybrid-bipartite
consensus obtained the worst community partitions even
when including information regarding both the individual
instances and the found communities.
It is worth noting that using consensus strategies to

combine the communities found by individual node re-
lations did not always yield the highest quality results.
Results showed that for some combinations of relations,
the highest quality communities were obtained when col-
lapsing relations into a unique graph. In those cases, the
consensus strategies allowed to obtain communities of the
same or worse quality. This situation could respond to
different reasons.
First, the information provided by each individual rela-

tion might not be neither enough nor accurate for discov-
ering the community structure. As stated in [17], relations

could be noisy or sparse, hindering the community detec-
tion process. For example, the SharedTag and SimilarCon-
tent might result in similar graph structures, which leads
to similar community structures that do not add any extra
information to the process. Second, relations might be
redundant. In such cases, adding more relations does not
necessarily imply adding new information to the process.
Third, relations might provide contradictory information
regarding the nodes. For example, the SimilarContent and
SharedClass relations. For the analysed dataset, the topic
or class assigned to posts does not have a correlation
towards the actual content of posts. In this regard, whilst
two posts might be linked by the SimilarContent relation,
they might not be linked by the SharedClass one.
In summary, the selection of the relations to consider

and whether to collapse all relations into a unique graph
or apply a consensus strategy should be guided by the
characteristics of the data under analysis. For example, as
Twitter is a social platform aimed at sharing information,
content-based relations might convey more information
than the social ones, which might be rather casual or
noisy. Additionally, as results showed, in those cases in
which more than two relations are meant to be used, it is
likely that the same results would be obtained with fewer
relations (thus reducing the computational complexity)
given the selection of the adequate consensus strategy.
In those cases in which relations might be contradictory

(as in the case of the SimilarContent and SharedClass), it
might be preferable to collapse them into a unique graph,
as the nature of relations might mislead the consensus
strategy. For example, cluster-based and instance-based
techniques were shown to be highly sensitive to differences
on the underlying community structures. Thereby, com-
munity quality tended to be low. Finally, in the overall
case, metric-based techniques were shown to attain the
best results. As those techniques rely on computing a score
for each community structure they are not susceptible to
the existence of redundant information (redundant struc-
tures would achieve similar scores) nor to the existence
of contradictory information (the computed metric would
favourite one structure over the other) in the general case.

V. Conclusions

Based on the increasing amount of information available
in social networks, which leads to the necessity of integrat-
ing heterogeneous relations between users and posts, this
work aimed at analysing several consensus strategies for
extending community detection techniques designed for a
unique data dimension to multi-dimensional networks. It
tackled the problem of how to combine diverse inform-
ation sources available in social media data to optimise
the quality of the discovered communities. Moreover, it
showed the effect that each defined consensus strategy has
over community quality, and how the information sources
behave when individually considered.



Experimental evaluation showed interesting findings.
First, using consensus strategies could help to improve the
quality of communities with respect to collapsing multiple
heterogeneous relations into a unique graph. Second, the
diverse information sources were found not to evenly
contribute to the improvement of community quality,
showing that including multiple information sources does
not necessarily imply performance improvements. Third,
the diverse consensus strategies have a distinct effect over
the quality of communities. Fourth, the behaviour of the
information sources differs according to whether they are
mixed together or individually analysed. Thereby, the
selection of the diverse information sources should be in
accordance to how they are going to be integrated, or used,
in the community detection process.
Finally, some interesting problems for further explora-

tion could be derived from the performed analysis. First,
the effect of the consensus strategies over other set of
node relationships could be studied. Second, the nature
and characteristics of each set of information sources could
be studied to determine whether it is convenient to apply
consensus techniques or collapsing them into a unique
graph. Third, the performance of applying more advanced
consensus strategies could be assessed.
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