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Abstract

Software systems naturally evolve, and this evolution often brings design
problems that contribute to system degradation. Architectural smells are
typical symptoms of such problems, and several of these smells are related
to undesired dependencies among packages. The early detection of smells is
essential for software engineers to plan ahead for maintenance or refactoring
efforts. Although tools for identifying smells exist, they detect the smells once
they exist in the source code when their undesired dependencies are already
created. In this work, we explore a forward-looking approach for identifying
smells that can emerge in the next system version based on inferring package
dependencies that are likely to appear in the system. Our approach takes
the current design structure of the system as a network, along with infor-
mation from previous versions, and applies link prediction techniques from
the field of social network analysis. In particular, we consider a group of
smells known as instability smells (cyclic dependency, hub-like dependency,
and unstable dependency), which fit well with the link prediction model. The
approach includes a feedback mechanism to progressively reduce false posi-
tives in predictions. An evaluation based on six open-source projects showed
that, under certain considerations, the proposed approach can satisfactorily
predict missing dependencies and smell configurations thereof. The feedback
mechanism led to improvements of up to three times the initial precision
values. Furthermore, we have developed a tool for practitioners to apply the
approach in their projects.
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1. Introduction

Software systems naturally evolve due to changes in their requirements
and operating environment, which leads to new design decisions and source
code modifications. In light of these changes, engineers need to ensure a
graceful system evolution. Nonetheless, as a system evolves, the amount and
complexity of the interactions among its software elements are likely to in-
crease, affecting the system design structure (Hochstein and Lindvall, 2005;
de Silva and Balasubramaniam, 2012). Although functional dependencies
are necessary, evolution often brings undesired dependencies among modules
(e.g., system packages) (Hochstein and Lindvall, 2005; de Silva and Bala-
subramaniam, 2012). Architectural smells (ASs) (Garcia et al., 2009) are
system configurations that usually hint at degradation problems at the de-
sign level. A typical example are cycles (Melton and Tempero, 2007), which
involve a particular pattern of undesired dependencies among packages. This
work focuses on the so-called instability smells (Sas et al., 2019), which de-
scribe dependency-based configurations that are likely to produce rippling
effects upon changes, compromising the system’s maintainability and testa-
bility. The early detection of such smells is important for engineers to spot
degradation trends in a system and evaluate repairing actions.

There are several tools for managing system dependencies and detecting
some types of smells. These tools typically extract information about soft-
ware elements and their dependencies from source code and compute certain
metrics, which altogether serve to identify candidate ASs in the system. How-
ever, a limitation of existing tools is that they are reactive, as they can detect
a smell once it exists in the code. However, developers might be reluctant
to fix problems once they are already in the code. In the case of instability
smells, preventing them often requires a global design assessment to detect
package configurations that might become smelly in the near future. This
is a tedious and error-prone activity if performed manually. Thus, we argue
for the anticipation (i.e., prediction) of likely ASs to provide engineers with
insights into the health of the current software architecture and the places
where degradation is expected to appear. Indeed, the predicted ASs should
be interpreted as system trends and not as definite problems.
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In this work, we present a proactive approach that leverages link predic-
tion (LP) techniques (Liben-Nowell and Kleinberg, 2007) for inferring (fu-
ture) package dependencies for a given system version and then predicting
possible ASs configurations in the inferred design structure. This approach
is a continuation of prior work (Dı́az-Pace et al., 2018), in which we investi-
gated the usage of supervised classification techniques for predicting package
dependencies for the next system version. We have now evolved our approach
to include a feedback mechanism that considers the evolution of package de-
pendencies from one system version to the next one and consequently adjusts
the ranking of ASs presented to engineers. An experimental evaluation with
three types of smells and six open-source projects from the literature shows
that this mechanism reduces the number of false positives over time, lead-
ing to higher precision in the prediction of ASs. The main contribution of
the approach lies in the feasibility of predicting relevant smells that, if left
unattended by engineers, might lead to high maintenance costs or system
degradation in the future. We have also built a tool, called ASPredictor, to
support the approach and make it practical for engineers and researchers.

The rest of the article is organized into six sections. Section 2 gives back-
ground information about ASs and motivates the prediction of dependencies
for smell configurations. Section 3 discusses how the prediction of package
dependencies can be cast as a link prediction problem. Section 4 presents
the main building blocks of our prediction approach. Section 5 describes a
series of experiments with six Java open-source systems for evaluating the
approach and discusses the main results and lessons learned. Section 6 covers
related work. Finally, Section 7 presents the conclusions and outlines future
work.

2. Dependencies and Architectural Smells

Software systems often exhibit design problems, which can be introduced
either during development or along with their evolution. These problems
harm the system’s quality and make maintenance difficult, as they degrade
its design structure. Architectural smells (ASs) can be defined as a combina-
tion of design constructs that often indicate modifiability problems (Garcia
et al., 2009). Different ASs have been cataloged in the literature (Garcia
et al., 2009; Tracz, 2015; Marinescu, 2012a). Of particular relevance to this
work are the so-called dependency-based smells (Garcia et al., 2009), which
involve interactions among system elements (e.g., packages). These smells
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occur when one or more elements violate design principles or rules, often
manifesting as undesired dependencies in the module structure (Hochstein
and Lindvall, 2005).

In this work, we tackle a group of dependency-based ASs known as insta-
bility smells (Fontana et al., 2016), namely: Cyclic Dependency (CD), Hub-
like Dependency (HLD) (Tracz, 2015), and Unstable Dependency (UD) (Mari-
nescu, 2012a). These smells can considerably impact on maintenance ef-
forts (Sas et al., 2019). We focus on packages as the unit of analysis, as the
package structure of a system provides an approximate view of its modules,
which often reflects the decomposition criteria followed by the developers.
Furthermore, instability smells among packages tend to persist longer across
system versions than smells among classes (Sas et al., 2019) and might move
to central parts of the system design. For this reason, we argue that these
smells at the package level are a good target for degradation trends. Next,
we discuss the characteristics of the smells and their detection strategies for
Java packages.

Cyclic Dependency. In this smell, various elements directly or indirectly de-
pend on each other to function correctly. For example, Figure 1a depicts
a cycle among four packages in Apache Derby, which appeared in version
10.2.1.16 due to the dependency between packages jdbc and iapi.db. The
packages are connected through usage relations (dependencies). In general,
the chain of dependencies among packages breaks the desirable acyclic na-
ture of a sub-system’s dependency structure. Thus, the elements involved in
a cycle can be hard to maintain, test or reuse in isolation. The typical strate-
gies for detecting cycles are based on the DFS algorithm for graphs (Fontana
et al., 2017).

Hub-like Dependency. This smell arises when an element has a large number
of incoming and outgoing dependencies. The central element in the smell is
called a hub. The strategy for detecting hubs (Tracz, 2015) first computes
the median of all packages’ incoming and outgoing dependencies. Then, for
each package, it checks if both its incoming and outgoing dependencies are
greater than the incoming and outgoing medians, respectively, and finally
checks whether the difference between incoming and outgoing dependencies
is smaller than a fraction of the total dependencies of that package. This dif-
ference is referred to as the “hubness” of the package. For example, Figure 1c
shows that package org.apache.derby.catalog.types uses 7 packages and
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Figure 1: Examples of Architectural Smells (Apache Derby)
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is used by 5 other packages in version 10.11.1.1, which turns the package
into a hub. The emergence of this hub is due to additional package depen-
dencies with respect to version 10.10.1.1.

Unstable Dependency. Based on the well-known Instability metric (Mari-
nescu, 2012b), this smell refers to an element that depends on other ele-
ments that are less stable than itself. Thus, the affected element might cause
a ripple effect of changes in the system. The strategy for detecting unsta-
ble elements relies on the computation of the Instability metric, which was
originally defined for dependencies among classes. When extending this defi-
nition to packages, we need to consider that packages might be coupled due to
dependencies with multiple classes and include the number of dependencies
in the metric. Once the metric is computed, a package is deemed unsta-
ble if it depends upon other packages with higher Instability values. The
more dependencies a package (affected by the smell) has with other unsta-
ble packages, the stronger the smell is (Fontana et al., 2016). For example,
Figure 1b shows that org.apache.derby.impl.sql.execute.rts becomes
unstable in version 10.6.1.0, due to changes in its dependencies, which alter
its Instability score. As a result, the package ends up depending on a package
(org.apache.derby.impl.sql.catalog) with a higher Instability score.

2.1. Evolution of smells

Architectural smells present different behaviors in the evolution of a sys-
tem. Some ASs appear in the system from the initial versions, while others
emerge at specific points in time. ASs can also grow, in terms of their severity
(i.e., number of affected elements or number of attached dependencies), from
one version to another. For instance, one might consider that a CD smell
worsens when the number of packages in the cycle increases. Figure 2 illus-
trates the evolution of CD smells for 11 versions of Apache Camel, in which
each row represents a different cycle. Note that several cycles emerge on
intermediate versions rather than on the initial version. The smell can also
disappear, either due to a functional change in the system or a refactoring
action.

We hypothesize that ASs can emerge (in a future version) due to specific
dependency patterns in the package structure. We refer to these likely ASs as
“quasi-smells”, as their appearance is conditional to the evolution of certain
undesirable dependencies among packages. When these dependencies inad-
vertently appear in the source code (from one system version to another),
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Figure 2: Evolution of cycles in Apache Camel (the circle diameter is proportional to the
cycle size).

the smelliness of some packages intensifies, and they turn into actual smells.
In other words, the difference between a quasi-smell and a smell lies in the
number and configuration of package dependencies, which enables the detec-
tion strategies to flag the smells. This emergence of ASs is exemplified in
Figure 1. Since quasi-smells can be seen as “seeds” for design problems in
the system, forecasting the emergence of the corresponding smells is helpful
for engineers as early quality warnings. For instance, engineers can decide
to prevent specific ASs from happening (when they are still quasi-smells) or
limit their adverse effects on the system.

Several tools currently provide detection capabilities for dependency-
based ASs, such as Sonargraph, LattixDSM, HotspotDetector (Mo et al.,
2015), or Arcan (Fontana et al., 2017). However, these tools are reactive, as
they work when the smells are already realized in the code. In this scenario,
removing a detected smell (e.g., via refactoring) might not be straightforward
for developers because they need to invest additional efforts and guarantee
that the system will continue to function correctly. Our approach aims to
develop a proactive tool for spotting quasi-smells in the package structure,
which have high chances of becoming ASs due to the addition of a few (un-
desired) dependencies in upcoming system versions. The prediction of such
ASs is based on inferring likely package dependencies.
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3. Link Prediction Techniques

A key observation about the appearance of dependencies contributing to
the formation of ASs is that, despite changes occurring at the class level, the
package structure remains more or less stable across system versions while
dependencies among packages keep being added. There are, of course, ex-
ceptions in which the number of packages varies from one version to another,
for example, across initial systems versions where the main structure and
functionality are still fleshed out or versions in which refactoring takes place.
Thus, we argue that the package structure and its evolution over time give
the basis for predicting which dependencies are likely to appear between pairs
of packages in the future.

Link Prediction (LP) adapts Social Network Analysis (SNA) techniques
for studying to what extent the evolution of a network can be modeled using
its intrinsic features (Liben-Nowell and Kleinberg, 2007). This task involves
inferring “missing” links between pairs of nodes in a network based on the
observable interactions (or links) among nodes and node attributes. As soft-
ware systems comprise elements that interact with each other, it is natural
to model systems (or their views) as graphs. However, software design net-
works could have a different dynamic than traditional social networks. A
prerequisite for applying LP in our approach is transforming the system un-
der analysis into a dependency graph. More formally, a dependency graph is
a graph DG (V,E), where each node v ∈ V represents a module, and each
edge (or link) e (v, v′) ∈ E represents a dependency from node v to v′. Since
we deal with Java systems, nodes correspond to packages while edges repre-
sent the usage relations between those packages. In principle, each system
package can be regarded as a different module. Nonetheless, this assumption
might not hold in all systems (e.g., different sub-packages might belong to
the same conceptual module).

The LP task takes a DGn (V,E) at time n, and then infers the edges
that will be added to DGn+1 (V,E) at time n + 1. Let U be the set of all
possible edges among nodes in DGn (V,E). The LP task generates a list R
of all possible edges in U − E, and then indicates whether each edge (in R)
will be present in DGn+1 (V,E).

Link Prediction in social networks is based on the principle of homophi-
ly (Liben-Nowell and Kleinberg, 2007), which states that interactions be-
tween similar individuals occur at a higher rate than those among dissimilar
ones. In our context, this principle implies that similar packages (according
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to some criteria) have a higher chance of establishing dependencies than dis-
similar packages. In general, LP techniques assess node similarity based on
topological and content-based features.

3.1. Applying Classification Techniques

Although intuitive, the homophily principle does not always hold for com-
plex networks, such as those based on software-related dependencies (Zhou
et al., 2014). For instance, two similar packages can intentionally be designed
to not become dependent on each other based on business logic or modularity
reasons. Moreover, dependencies might still appear between dissimilar pack-
ages. Thus, we argue that the LP task applied to software networks should
be able to learn “exceptions” to the homophily principle. These exceptions
should tell whether two packages would connect at version n+ 1. In particu-
lar, we cast LP as a binary classification problem and use a Machine Learning
(ML) approach to learn from both the existence and absence of relations be-
tween the different pairs of packages in the dependency graph. Furthermore,
this approach allows taking the history of the dependency graph into account
(i.e., the graphs corresponding to previous system versions) to enhance the
classification model.

The classifier to be trained receives as input a dataset consisting of a
set of instances that are derived from the package dependency graph. Each
instance consists of a given pair of nodes, a list of features characterizing it,
and a label (or class) that indicates whether a dependency exists between
the given pair of nodes. The pairs of connected nodes belong to the positive
class, while the pairs of unconnected nodes to the negative class. This tabular
representation is the input to build the ML models.

In previous work (Dı́az-Pace et al., 2018), we assessed the predictive power
of LP techniques for inferring package dependencies. The initial results using
only topological features showed that classification models could provide rea-
sonable predictions, which improved when including content-based features.
For this reason, instances in this work are characterized by both topological
and content-based features1.

1The complete list of features is listed in the companion repository: https://github.
com/tommantonela/ASPredictor/wiki/Appendix:-Similarity-Metrics-Included
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3.2. Topological and Content-based Features
Topological features are related to the graph structure and the role that

nodes and edges play in that structure (Liben-Nowell and Kleinberg, 2007).
For instance, Common Neighbors is defined as the number of common ad-
jacent nodes (i.e., neighbors) that two nodes have in common, aiming at
capturing the notion that two unrelated elements sharing neighbors would
be “introduced” to each other at a posterior time. In this context, we se-
lected a number of topological similarity metrics (Deza and Deza, 2006),
namely: Common Neighbors, Salton, Sorensen, Adamic-Adar, Katz, Sim-
Rank, Russell-Rao, and Resource Allocation. The selected metrics lever-
age either on local or global characteristics of the dependency graph (Lu
and Zhou, 2011). On one hand, local similarity metrics (such as Common
Neighbors or Adamic-Adar) are concerned with the neighborhood of nodes
(i.e., packages). On the other hand, global metrics (such as Katz) are con-
cerned with the whole network structure. As a result, global metrics can
provide more accurate predictions than local ones, at the expense of higher
computational complexity. The selected metrics have already been used for
assessing the structural similarity of source code entities with satisfactory
results (Terra et al., 2013).

Palomba et al. (2014) have indicated that content-based metrics are or-
thogonal to structural ones. In other words, using content-based informa-
tion allows identifying specific properties of software elements that would
be missed if only structural or topological information were considered. In
this sense, content-based features are often used to complement topological
features. For instance, we can leverage features derived from source code ele-
ments, such as classes or packages, which can be seen as textual artifacts con-
taining identifiers, comments, parameters, and method names. Hence, they
can be considered textual documents, and Natural Language Processing tech-
niques can be applied to extract lexical properties from source code (Palomba
et al., 2014). For example, a simple strategy is to compute the lexical overlap
between the texts. To this end, texts are transformed into their bag-of-words
(BoW) representations (Salton and McGill, 1986), which can be built by
considering different aspects of the original texts.

In our domain, we can think of each Java class c as a BoW containing
the most representative tokens that characterize its source code, for example
the names of the field attributes of the classes, the names of the declared
methods or the class comments and documentation, which could all lead
to different degrees of similarity. This way, BoW can provide content-based
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representations for assessing the similarity among classes. Furthermore, class
representations can be easily extended to packages. The representation of a
package p is defined as the (recursive) union of the BoW representations
of all the classes contained by p. In our evaluation, packages were textually
represented by the names of the field attributes, the name of the methods, the
method invocations, the name of parameters, the comments and the Javadoc
documentation. Then, similarity is assessed using the Cosine Similarity.

4. Approach

The LP task for predicting ASs is achieved in three phases, as depicted
in Figure 3. First, a prediction phase seeks to infer the appearance of new
dependencies in the following system version. Second, emerging smells of
different types are identified in a filtering phase. These smells are ranked
according to their characteristics and the confidence scores of the predicted
dependencies (from the first phase). Third, once the next version is known,
the confidence of the predicted dependencies is updated based on a learning
automaton (LA) (Moradabadi and Meybodi, 2017). A round of prediction
for ASs is implemented by two procedures, as depicted in Algorithms 1 and 2.
Each phase is described in detail in the following sub-sections.

In addition, we have developed a prototype called ASPredictor2 that
supports the prediction of instability smells and evaluates those predictions
using a sequence of system versions.

4.1. Phase 1: Prediction

Initially, individual dependencies are inferred based on training a binary
classification model. To do so, the dependency graphs corresponding to the
current (Gn) and previous (Gn−1) versions are required as inputs. The output
of this phase is the set of dependencies that are likely to appear in the
next version G*

n+1 and their confidence (lines 1 − 3 of Algorithm 1). Note
that this phase is smell-independent, as we only identify dependencies that
might prefigure different ASs in the second phase. For instance, in Figure 3,
dependencies B-D, F-D, F-A, and C-E were predicted for G*

n+1 by looking
at graph information from Gn−1 and Gn.

This phase involves three steps. In step 1, an instance-based representa-
tion of each dependency graph is constructed (as presented in Section 3.1)

2Available at: https://github.com/tommantonela/ASPredictor
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Algorithm 1 Prediction of smells for the next version

Inputs: Gn(Vn, En) : graph for current version n
Gn-1(V n-1, En-1) : graph for previous version n− 1
DL : list of dependencies (edges) from previous versions, including confidence scores

Outputs: smellsCD : ranking of predicted CD smells
smellsHLD : ranking of predicted HLD smells
smellsUD : ranking of predicted UD smells

1: classifier ← buildClassificationModel(Gn-1, Gn) {The classifier is also configured
with topological and content-based features}

2: DL ← predictDependencies(classifier,Gn, DL) {DL contains the predicted depen-
dencies with adjusted confidence scores, according to FL}

3: G*
n+1 ← (Vn, En ∪DL) {The predicted graph at version n+ 1}

4: smellsCD ← filterCD(G*
n+1, DL)

5: smellsHLD ← filterHLD(G*
n+1, DL)

6: smellsUD ← filterUD(G*
n+1, DL)

7: return rank(smellsCD, smellsHLD, smellsUD)
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(line 1). The classification model to predict likely dependencies is built in
step 2. Training a classifier for LP using graph data is challenging because
data is usually unbalanced, in the sense that there are fewer instances of
the positive class (i.e., dependencies between nodes) than instances of the
negative class (all missing dependencies between nodes). Furthermore, the
training and testing sets should be chosen judiciously by sampling the graph
structures (de Bruin et al., 2020). In our case, the training set comprises
instances belonging to two versions: i) existing dependencies in Gn−1 (as in-
stances of the positive class), ii) missing dependencies in Gn−1 (as instances
of the negative class), and iii) existing dependencies in Gn. This information
serves to train the classifier for properly learning instances of both the pos-
itive and negative classes. That is, we include information of dependencies
in Gn−1 that are not going to appear in Gn. For example, suppose only one
version was to be considered. In such case, no information regarding the neg-
ative class could be included for model training, as it would not be possible
to guarantee that those dependencies will not appear in Gn.

Once the model is trained, step 3 predicts likely dependencies for G*
n+1

(line 2). The prediction might face the case of dependencies in G*
n+1 arising

between packages added in Gn+1, and thus did not initially exist in Gn. In
this regard, only potential dependencies for the packages already existing in
Gn are considered.

At last, each predicted dependency is associated with a score, which indi-
cates the confidence of the prediction (DL in line 2). Confidence is initially
defined as the probability of the dependency to appear in the next version,
as determined by the trained model. The higher the confidence score, the
higher the chances of the dependency appearing in the next version. Pos-
terior updates of the dependency scores result from the LA mechanism in
Phase 3.

4.2. Phase 2: Filtering

The fact that the classifier predicts whether an individual dependency
is likely to appear is not enough to predict the appearance of a smell since
not every predicted dependency might cause a smell to emerge. Thereby,
the graph G*

n+1, which includes the predicted dependencies, undergoes a
filtering process that depends on the type of smell at hand (lines 4−6). This
filtering phase requires the provision of smell-specific filters for the CD, HLD,
and UD smell types. For instance, in the case of the cycle filter, based on
the newly predicted dependencies should analyze whether they contribute to
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closing a cycle. In this case, Figure 3 shows that the addition of the predicted
C-E dependency closes a cycle involving packages D, C, and E in G*

n+1.

Cycle Filter. It considers predicted dependencies leading quasi-cycles to close

and become actual cycles in G*
n+1 (line 4). To do so, all predicted dependen-

cies are simultaneously added to the current graph, and then this “expanded”
graph is traversed in search of cycles involving such newly-added dependen-
cies. Considering the large number of cycles that could traverse a given
dependency, the filter outputs the dependencies closing new cycles instead of
each newly discovered cycle. Dependencies are then prioritized according to
their confidence and the number of cycles they complete.

Hub Filter. It considers the nodes incidental to the predicted dependencies
that fit the hub characterization for G*

n+1 (line 5). This description relies
only on the number of dependencies and not on the particularities of such
dependencies. The filtering takes all predicted dependencies referring to a
node altogether (Dı́az-Pace et al., 2018). Hence, it considers the possibility
of a quasi-hub node needing multiple dependencies to become a hub. Depen-
dencies might be unnecessarily added to the graph, as not every incidental
dependency might be required for the node to become a hub. In this context,
we first rank dependencies according to their confidence scores. Then, de-
pendencies are iteratively added, one by one, to G*

n+1, and the hub detection
strategy is checked at each step. Iterations stop when the node transforms
into a hub, or there are no additional dependencies to be added. At last, the
relevance score of a discovered hub is based on the “hubness” of the node (i.e.,
the ratio between the metrics involved in the hub characterization) multiplied
by the average confidence of the dependencies involved.

Unstable Dependency Filter. Analogously to the hub filter, it considers the
nodes incidental to the predicted dependencies that fit the characterization of
the UD smell for G*

n+1 (line 6). However, unlike the hub filter, all predicted
dependencies are simultaneously considered in the analysis. This is due to
the global nature of the UD smell, in which changes to one node can trigger
changes in the instability condition of an unrelated node. The relevance score
of unstable nodes is determined by the strength of the smell and the average
confidence of its incidental dependencies.
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4.3. Ranking Predicted Smells

In (Dı́az-Pace et al., 2018), smell filtering was solely based on the simple
appearance of the smell, regardless of its characteristics or those of its pre-
dicted dependencies. This naive filtering implied that every AS was reported
as output, which increased the engineer’s efforts for (manual) inspection of
the predicted ASs to discard false positives. In this work, filtering is en-
hanced to consider the computation of relevance scores for the predicted ASs
(DL in lines 4− 6), which results in a prioritization (or ranking) of the ASs.

Determining the number of ASs to include in a ranking is not straight-
forward. Traditionally, the number of recommended elements is defined as
a fixed threshold based on the number (or a percentage) of elements (Peker
and Kocyigit, 2016). However, in a dynamic environment, as evolving soft-
ware systems are, such a strategy might affect recommendations’ quality. In
this context, we adjust the number of ASs to select based on the history of
discoverable smells and predictions to account for changes in the number of
predictable ASs across system versions. Particularly, the number of smells is
set to the average number of predictable ASs in the previous system versions
plus its standard deviation. This dependence on the previous predictable
smells might affect the quality of recommendations in particular cases, such
as sudden changes in the system structure (e.g., a major refactoring), in
which none smell could be predicted. Nonetheless, as the system continues
to evolve, it is expected that the number of elements to predict will stabilize.
Additionally, we include a correction factor based on the nDCG (Normalized
Discounted Cumulative Gain) value achieved on previous recommendations.
This factor adds a margin error based on the history of missed predictions
and allows accounting for unexpected changes in the history of predictions.
This factor also accounts for mistakes in the previous recommendations, in
which not every smell was included in the defined ranking.
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Algorithm 2 Update of dependency confidence scores for the next version

Inputs: Gn+1(V n+1, En+1) : actual graph for next version n+ 1
G*

n+1(V *
n+1, E

*
n+1) : predicted graph for next version n+ 1

DLn : list of dependencies (edges) from previous versions, including confidence scores
Outputs: DLn+1 : updated list of dependencies, including confidence scores

{DLn is assumed to be already initialized}
1: DLn+1 ← ∅
{Existing predicted dependencies are monitored}

2: foreach < din, s
i
n >∈ DLn do

3: if din ∈ E*
n+1 then {The dependency was predicted}

4: if din /∈ En+1 then {It did not appear in the actual next version}
5: sin+1 ← 1− β ∗ sin {Penalize the dependency score}

{Keep the updated dependency in the list}
6: DLn+1 ← DLn+1∪ < din, s

i
n+1 >

7: end if
{If the dependency appeared, do not copy it to DLn+1}

8: end if
9: end for
{LA created for every new predicted dependency}

10: foreach djn+1 ∈ E*
n+1 do

11: if djn+1 /∈ DLn then {If the predicted dependency is actually new}
12: sjn+1 ← classifierProb(djn+1) {Initialize probability of appearance for the de-

pendency, as determined by the classifier}
13: DLn+1 ← DLn+1∪ < djn+1, s

j
n+1 > {Update list of dependencies}

14: end if
15: end for
16: return DLn+1

4.4. Phase 3: Feedback

Phases 1 and 2 correspond to a traditional LP approach in which predic-
tions are based on “static” snapshots of the network. Thus, the appearance
of each dependency is represented by a one-time event. However, in many
applications, the structure and parameters of the network change over time.
Thus, richer information could be extracted from the history of network
evolution and predictions. For instance, if a dependency was mistakenly pre-
dicted for a given version, the knowledge that such prediction was incorrect is
not carried to inform future predictions. To account for this situation, after
predictions are made and the next system version is known, our approach
includes information regarding both added and deleted dependencies on the
newest system version. This information could be alternatively provided by
the engineer when inspecting the outputs of the previous phases.

16



A B

D

C

E

F

A B

D

C

E

F

𝐺𝑛+1
(dependency graph for 𝑣𝑛+1

with new dependencies added)

Dependency Relevance Score

B – D 1.0

F – D 0.97

F – A 0.99

pool of confidence scores at time 𝑛

Dependency Relevance Score

F – D 0.95

C – E 0.87

pool of confidence
scores at time 𝑛 + 1

Reinforcement Learning Phase(at time 𝑛 + 1)3
Dependency Appeared in 𝐺𝑛+1?

B – D YES

F – D NO

F – A YES

C – E NO

penalize
dependency

remove
dependencies

from pool add new 
dependency to pool

𝐺
∗
𝑛+1

(dependency graph for 𝑣𝑛
+ predicted dependencies)

Figure 4: Overview of the Reinforcement Learning phase of the approach

This phase relies on a learning automaton (LA) (Moradabadi and Mey-
bodi, 2017) as a schema for adjusting the probability of occurrence of a
phenomenon according to a signal being generated from the environment.
In our case, the phenomenon refers to the appearance of a dependency in a
graph. An LA is created (and maintained) for every predicted dependency.
Each LA starts assigning a confidence score equal to the probability of ap-
pearance of the dependency, as determined in Phase 1. The LA is activated
as soon as the new version is known to monitor its corresponding depen-
dency. The LA behavior for a dependency < din, s

i
n > is defined by lines

3− 7 of Algorithm 2. If the dependency was predicted but did not appear in
the new system version (lines 4−6), the LA decreases its confidence score to
penalize the incorrect prediction. Otherwise, when the dependency appears
in the next version (i.e., the prediction was fulfilled), the LA is discarded as
the dependency does not need further monitoring.

In the case of penalization, confidence is updated according to the rule
sin+1 ← 1−β ∗sin (line 5), where sin represents the confidence of dependency
din at time n, and β is a parameter for measuring the confidence adjustment.

For example, let us assume that dependencies B-D, F-D, and F-A were

17



predicted for G*
n+1, as schematized in Figure 4. Following Algorithm 2, de-

pendencies should be checked once Gn+1 is known. As B-D and F-A appeared
in Gn+1, their LAs are discarded. Since F-D did not appear, its confidence
score is penalized from 0.97 to 0.95 for a β of 0.01. In the case of C-E, which
was firstly predicted for this version, a new LA is created with an initial
confidence of 0.87, as determined by the classifier.

5. Evaluation

To assess the performance of the proposed approach, we selected six Java
open-source systems (Apache Camel, Apache Ant, Apache Derby, Apache
Cxf, Hibernate and Weka) that have also been used in the literature (Fontana
et al., 2016; Le et al., 2018), and whose characteristics are summarized in
Table 13. Four of the selected systems belong to the Apache ecosystem, as
it is one of the largest open-source organizations that has produced well-
maintained code repositories. In turn, two non-Apache system were also
included. The six systems have different size and come from different domains
and organizations to ensure broad applicability of our results.

3The evaluations were performed only on the core libraries of the system distributions.
Thus, the reported KLOC refers only such core library.
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# versions Domain Release
Span Date

KLOC

Apache
Ant

10 Software tool for automating software build
processes. The primary known usage of Ant is the

build of Java applications.

2003 2017 ≈ 44

Apache
Camel

16 Framework for message-oriented middleware with a
rule-based routing and mediation engine that

provides a Java object-based implementation of the
Enterprise Integration Patterns using an Application

Programming Interface to configure routing and
mediation rules.

2009 2018 ≈ 36

Apache
Cxf

8 It is a fully-featured Web services framework. 2009 2014 ≈ 39

Apache
Derby

13 It is a relational database management system that
can be embedded in Java programs and used for

online transaction processing.

2005 2018 ≈ 39

Hibernate 4 It is an object-relational mapping tool for Java that
provides a framework for mapping an object-oriented

domain model to a relational database.

2017 2019 ≈ 37

Weka 7 It is a collection of machine learning algorithms for
data mining tasks. It contains tools for data

preparation, classification, regression, clustering,
association rules mining, and visualization.

2002 2022 ≈ 12

Table 1: Summary of the analyzed systems

We selected systems with more than 10 releases and more than 10 con-
tributors each. The availability of multiple versions through the lifetime of a
system is related to the maturity of the projects, as a long story of releases
ensures that the evolution of smells can be tracked over an extensive period.
It is in the long term that the variations or trends of smells can be noticed.
Finally, regarding the number of developers, the goal was to select systems
involving experienced developers who know the principles of software design
and might be aware of the consequences of breaking them.

We addressed the following research questions:

• RQ1. Are the ASs considered in the study correlated with design degra-
dation symptoms?

To be of interest for predictions, the ASs detected in the systems should
be somehow related to quality problems in the system. We analyze the
effect of ASs on package structure and the prevalence of ASs in the system
evolution (Arvanitou et al., 2017). These two aspects might be indicators of
design degradation if the smells are left unattended in the systems.
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• RQ2. Is the detection of the AS types acceptable in terms of precision
and recall?

Here, we analyze the precision and recall of the approach when combining
phases 1 and 2. Note that the LA mechanism is not yet included.

• RQ3. Does the prediction of smells improve when considering the LA
feedback mechanism?

We had initial evidence (Dı́az-Pace et al., 2018) about low precision values
when using only phases 1 and 2 of the approach. Thus, we analyze the
precision and recall of the whole approach compared to the results of RQ2.
The goal is to assess the possible benefits of the LA mechanism (phase 3).

5.1. Data Collection

As the AS prediction involves multiple system versions, it is necessary to
select the sequence of versions to analyze. In this sense, an “evolution path”
is a sequence of version pairs in which each pair (s, t) represents an ordered
pair, where t is the target version that evolved directly from a source version
s. Following Behnamghader et al. (2017), we define an evolution path as the
sequence of all minor versions between two subsequent major versions of a
system to capture the total changes within a single major version. Patches
and pre-releases were ignored, as they mainly involve bug fixes, while pre-
releases are merged into a posterior official version (either major or minor
ones). To illustrate the selection of versions and evolution paths, let us
assume the following set of versions for a system: 1.0.0, 1.1.0, 1.1.1,
1.2.0, 1.2.1, 1.2.1-beta1, 1.3.0 and 2.0.0. As previously defined, the
selected evolution path only considers minor versions. Hence, the evolution
path for this system will include versions 1.0.0, 1.1.0, 1.2.0 and 1.3.0.
In this case, versions 1.1.1 and 1.2.1 are discarded, as they are patches for
versions 1.1.0 and 1.2.0. Version 1.2.1-beta1 represents a pre-release,
which is also discarded. Finally, 2.0.0 is discarded as it represents a different
major version.

Different systems follow different release evolution paths, so determin-
ing the correct evolution path for each system is not straightforward. To
determine the correct version sequences and, thus, the evolution paths, we

20



analyzed the Git log of the selected systems4.
For most systems, the package structure remains relatively stable. More-

over, in all pairs of consecutive versions (except for the last Derby ver-
sion), edges between already existing packages were added, which gives good
chances of predicting those edges. Regarding the number of ASs detected
for each version, as the problem of finding cycles is NP, it might be time-
consuming for systems to have a high number of packages and edges con-
necting them. Hence, we limit the prediction of cycles to those comprising
between 3 and 10 packages, or 6 in the case of Hibernate. The reported
cycles include every possible cycle in the system, disregarding whether the
cycles have edges between sub-packages, which accounts for the high number
of discovered cycles.

Cycle predictability was assessed considering that every package in the
cycle was already present in the system, and at least one of the involved
dependencies does not currently exist. On the other hand, in the case of
HLD and UD smells, it was only checked whether the package affected by
the smell was already present in the system. Given that this is a global
phenomenon, it might occur that although a package already exists, it might
need dependencies with other unknown packages to become an HLD or UD
instance. As another observation, we should mention that not every pair of
versions in the selected evolution path is helpful for predictions, given that
there might not be smells to predict for every pair of them.

When transforming the package dependency graphs into datasets for the
ML task, we computed all features described in Section 3.2. To obtain mean-
ingful predictions, the pairs of consecutive versions to analyze (vn−1, vn) were
required to present changes regarding the existence of ASs, which implies the
addition of new dependencies and smells between existing packages. The dif-
ferent types of ASs were identified according to the detection rules presented
in Section 2.

An SVM algorithm (Support Vector Machines) parameterized with an
RBF (Radial Basis Function) kernel was selected for the classification phase,
which is helpful for problems involving datasets with an unbalanced class
distribution (Schölkopf et al., 2001). Basically, SVM aims to create a hy-

4The characteristics of the versions analyzed in this study for the six selected systems
are listed in the Appendix at: https://github.com/tommantonela/ASPredictor/wiki/
Appendix:-Selected-System-Versions
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perplane that separates the data into classes by means of a kernel function
that previously transforms the data. Traditional linear functions work well
when the original data to classify is effectively linearly separable, which might
not be always the case. Additionally, linear functions do not allow to work
with outliers or highly skewed classes (Schölkopf et al., 2001). On the other
hand, non-linear kernels, such as RBF, allow mapping the data into a high-
dimensional feature space that increases the chances of finding an adequate
separation in cases with highly skewed classes or outliers, when compared to
linear or even polynomial kernels.

As explained in Section 4.1, system versions were temporally split into
training and test sets (Yang et al., 2015). For the training set, it comprised
existing dependencies in versions Gn−1 and Gn (positive class), and missing
dependencies in Gn−1 that did not appear in Gn (negative class). The test
set comprises the dependencies in Gn+1 between packages already existing in
Gn, as it would not be possible for the model to directly predict dependencies
between new and unknown packages.

5.2. Performance Metrics

We compare the predicted results (for a given version) against the next
system version. Predictions are made over vt−1 and vt, and their predictive
performance is then evaluated by considering the predictable elements (e.g.,
dependencies or ASs) in vt+1.

Performance was assessed using traditional ML metrics, namely: preci-
sion and recall. In principle, both recall and precision are relevant metrics;
however, we are more interested in recall than in precision because a high
recall would indicate that most new real smells are predicted, regardless of
the number of actually predicted smells. On the other hand, a high preci-
sion would suggest that most of the predicted smells appear in the system,
regardless of the actual number of predictable smells. Eventually, a high
recall might involve incorrectly predicting some smells, negatively affecting
precision. If those smells are a small fraction, they could be discarded with a
manual analysis of the tool outputs by engineers. Furthermore, the ranking
of smells obtained from the LA feedback mechanism was evaluated using the
nDCG metric (normalized Discounted Cumulative Gain).

In the following sub-sections, we separately discuss the predictions for the
three phases of the approach as a series of 7 experiments. Experiments are
organized according to the research question they are expected to answer. All
evaluations were run on a PC i7-4500U 1.8 GHz. with 8GB RAM - Windows
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10 and Java 8. In general, the computation time is affected by factors such
as the number of features and the size of the dependency graphs.

5.3. Answers to RQ1: Importance of the Smells

Experiment #1: Smelly Packages and Smell Survival Rates

In a technical debt framework (Ramasubbu and Kemerer, 2014), we can
think of ASs as symptoms of architecture degradation, particularly if the ASs
persist over several system versions. One indicator of debt accumulation is
change proneness (CP) (Arvanitou et al., 2017), which measures the suscepti-
bility of an artifact (e.g., a class or a package) to changes in upcoming system
versions. For a given package, the CP computation relies on two parameters:
the frequency of changes and incoming/outgoing dependencies for the pack-
age. We analyze the relationships between the CP of the packages affected
by smells (called “smelly” packages) and the CP of the non-smelly packages.
As smelly packages indicate potential quality problems, we hypothesize that
they should have higher CP than non-smelly packages, which will eventually
compromise the maintainability of the system.

For this experiment, we computed the CP metric for all the packages
and versions of each system, and marked those packages affected by at least
one smell instance. Then, we performed a statistical test, as sketched in (Le
et al., 2018), comparing the smelly and non-smelly CP distributions. Since
these distributions were not statistically normal, we ran a Mann-Whitney test
for each system with confidence levels of 0.05 and 0.01, respectively. Cliff’s
Delta was used to quantify the effect size between the tested distributions.
Results showed that, in most cases, the CP distribution for smelly packages
was significantly higher than that of the non-smelly packages, with medium
to large effect sizes. Thus, we can infer that the ASs considered in our study
were representative of design problems.

In addition, a recent study has provided evidence about the evolution
of instability smells over time (Sas et al., 2019), showing that package-level
smells often stay longer and tend to move to central parts of the system. To
assess these presumptions, we studied the survival rates of the ASs using the
Kaplan-Meier estimator, as depicted in Figure 5. Except for the cases of Cxf
(CD) and Ant (HLD and UD), we observed that the trends for the three
smell types are consistent and show a prevalence of the ASs over time.

Overall, we can answer RQ1 by saying that the analyzed smells play a
potential role in the design problems of the systems in terms of contributions
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to CP and survivability across versions. These factors make the ASs relevant
for engineers and a good target for our predictive approach.
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Figure 5: Survival Rates for the different Smells by Type

5.4. Answers to RQ2: First and Second Phases

Experiment #2: CD Prediction

Figure 6 presents the results of the CD prediction, with and without the
feedback mechanism for the Apache and non-Apache systems. As it can be
observed, excepting for Weka, almost every new dependency closing a new
cycle was found. Nonetheless, precision was generally low.
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Figure 6: Cycle Prediction Results - Apache Systems
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Figure 6: (cont.) Cycle Prediction Results - Non Apache Systems

As regards Ant, except for ant-1.3-ant-1.4-ant-1.5, the filter was able
to discover the new cycles. This problem was caused by missed dependencies
in the first phase. Even though at least one of the predicted dependencies
was part of a cycle in version ant-1.5, cycles were not discovered, as closing
them required additional dependencies that were not predicted. On the other
hand, a perfect recall was achieved for the other pair of analyzed versions,
meaning that all predictable dependencies involved in the closure of a new
cycle were discovered.

Camel presented similar recall results as Ant, achieving high recall for
all but one version pair. Similarly to Ant, the decrease in recall was due to
mistakes in the dependency prediction phase. Cxf and Weka exhibited the
lowest precision results derived from the low precision of the first phase.

In the case of Derby, precision was low while recall was perfect for three
analyzed version pairs. In the remaining pairs, the missed predictions were
due to mistakes in the first phase. In the case of Hibernate, recall was
perfect in all cases, at the expense of making erroneous recommendations, as
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evidenced by the low precision.
At last, Weka achieved the lowest results for the three metrics. Partic-

ularly, recall was not perfect in any case, showing that despite several false
positive results (denoted by the low precision), not every newly closed cycle
was found.

In summary, low precision was caused by the incorrect prediction of de-
pendencies during the first phase that led to the closure of cycles. Nonethe-
less, low precision also accounts for missed predictions. For example, a pre-
dicted dependency that appears in the next version but needs another de-
pendency for effectively closing a cycle would be counted as a mistake if the
second dependency is not also predicted. In turn, this situation negatively
affects recall.

Experiment #3: HLD Prediction

Figure 7 presents the results for the HLD prediction. Ant, Cxf, and
Hibernate achieved the lowest precision results. Both Ant and Hibernate
achieved perfect recall, while Cxf achieved a maximum of 0.8. In the phase
1, Cxf achieved almost perfect recall, meaning that nearly every new depen-
dency was correctly predicted. Hence, the low recall in phase 2 could account
for the global nature of the HLD smell. On the other hand, Weka achieved
perfect precision for two version pairs, at the expense of lower recall.

Camel achieved perfect recall for most analyzed sets of versions, implying
that, unlike for Cxf and Hibernate, the global structure had a mild effect on
predictions. This might also be related to the differences between the num-
ber of packages and edges added across versions. For example, considering
Cxf versions cxf-2.4.0-cxf-2.5.0-cxf-2.6.0 that achieved almost perfect
recall in the dependency prediction but low recall in the HLD prediction,
packages varied by 11%. For Camel, packages varied at most 19% when
considering versions camel-2.7.0-camel-2.8.0-camel-2.9.0, which main-
tained similar recall levels. Similar observations can be made regarding the
edges, which varied at most 8% and 13% for the same pairs of versions of
Cxf and Camel, respectively. Finally, regarding precision, the highest score
was observed for camel-2.8.0-camel-2.9.0-camel-2.10.0, which coinci-
dentally also achieved the minimum recall.
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Figure 7: Hub Prediction Results - Apache Systems
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Figure 7: (cont.) Hub Prediction Results - Non Apache Systems

Derby achieved perfect recall for some pairs of versions at the expense
of low precision. Even though for derby-10.1.1.0 - derby-10.2.1.6 -
derby-10.3.1.4 there was one predictable hub, it could not be predicted
due to either the global phenomenon of the hub or mistakes in dependency
prediction.

For two version pairs, Weka achieved perfect precision but not perfect
recall. This implies that all predictions were correct, but some correct pre-
dictions were missing. For one version pair (weka-3.4.0 - weka-3.5.0 -
weka-3.6.0) both precision and recall were 0. This was caused by both
missed dependencies on the first phase and the global nature of the smell.

From the observed results, it can be stated that the appearance of a
hub does not only depend on the already known structure of the graph (or
specifically, only on the dependencies being added to a package), but also on
the addition of new unknown packages to the system and their corresponding
dependencies. Hence, the decrease in recall might not be only related to
mistakes during the first phase.
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Experiment #4: UD Prediction

Figure 8 reports the prediction results for UD smells. As for the HLD
prediction, the most variable results were observed for Cxf. For Derby, Hi-
bernate and Weka not every new UD could be predicted. This situation
highlights the effect of the low precision in the first phase since false posi-
tive dependencies affected the accurate prediction of UD smells. The cases in
which UD predictions were not made differ from those for which no HLD pre-
dictions were made, emphasizing the differences between HLD and UD smells
even though they respond to similar definitions and system configurations.

Prediction results were similar for Ant, Camel and Cxf. In all reported
cases, the filtering correctly predicted the appearance of all new smells (per-
fect recall) at the expense of a high number of mistakenly predicted smells
(low precision). Incorrect predictions ranged between 18 and 50 for Ant
(representing between 60% and 83% of the total number of packages) and 28
and 55 for Camel (representing between 54% and 70% of the total number
of packages). The low precision of predictions could be explain by the low
number of predictable UDs. For example, in the case of Ant and Camel, only
one UD was predictable in each version pair. Hibernate results showed a low
precision, with variations in recall values, which was perfect for only one set
of analyzed versions. Weka showed perfect recall for two version pairs and
the highest precision among the three analyzed smells.

From the observed results, similarly to the trends for HLD smells, UDs
appear not only due to the addition of new edges to specific nodes but also
due to changes in the overall graph structure. Nonetheless, the variability of
results showed differences in the characterizations of both types of smells.
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Figure 8: Unstable Dependency Prediction Results - Apache Systems
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Figure 8: (cont.) Unstable Dependency Prediction Results - Non Apache systems

From Experiments #2, #3, and #4, we can answer RQ2 by saying that
the prediction of ASs exhibited an average precision of 0.15, 0.57, and 0.1
for the CD, HLD and UD types. The average recall was 0.75, 0.69, and 0.98
for the CD, HLD and UD types, respectively. For most pairs of versions,
the CD filter predicted every new dependency leading to new cycles. As
for HLD smells, hubs did not only appear due to new edges being added to
specific nodes but also due to changes in the overall graph structure. The
different systems had different sensitivity levels concerning those changes.
The appearance of UD smells showed similar trends to those of HLD smells.
Overall, the results motivate the need to improve the AS predictions’ preci-
sion.

5.5. Answers to RQ3: Third Phase

The addition of the LA feedback mechanism incorporates the possibility
of ranking the predicted ASs. As previously explained, we also adjusted the
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number of potential smells to be presented to the engineer. When only using
filtering, the nDCG represents the worst-case scenario in which the engineer
is presented with the complete set of predicted ASs and has to analyze all of
them to find the relevant ones.

Experiment #5: CD Prediction with Feedback

The overall trends showed in Figure 6 indicate differences in precision and
nDCG values compared to the results for RQ2. That is, the LA mechanism
reduces the number of mistakenly predicted CD smells and allows to rank
the smells higher than the mistaken predictions.

For Ant, we found precision improvements (with the LA mechanism) lead-
ing to absolute differences of 0.5. The improvements also implied reducing
the number of mistakenly predicted dependencies closing cycles from 60 to
8, representing less than 1% of all potential dependencies in the system. The
fact that precision improved while recall was not affected shows that the
ranking strategy could rank the actual smells higher than the predefined cut
line. Nonetheless, further investigations are needed to determine the correct
length of the ranking and better rank the predictions. As nDCG was not
perfect, we infer that some false positives were still ranked higher than the
correct predictions.

As for Camel, the LA mechanism achieved a lower recall for camel-2.12.0-
camel-2.13.0-camel-2.14.0, which can be explained by mistakenly ranking
a correct prediction below the cut line. Since precision was also low, mis-
taken predictions were also included in the ranking. The nDCG was close
to 1 for several versions, showing that the ranking accurately had almost
every correct dependency in the first positions, despite false positives. For
this system, precision improvements showed absolute improvements of up to
0.54 and reduced the number of incorrectly predicted dependencies in half,
representing approximately 1% of the potential dependencies in the system.

In Cxf, precision was improved in all cases, representing a reduction of
90% in the number of mistaken predictions. In the worst case, incorrectly
predicted dependencies were only reduced in half, predicting at most 394
incorrect ones (representing approximately 1% of the potential dependen-
cies). The LA mechanism led to two sets of versions cxf-2.1.0-cxf-2.2.0-
cxf-2.3.0 and cxf-2.2.0-cxf-2.3.0-cxf-2.4.0)) to a smaller recall than
the filtering alternative, with differences up to 5%. In both cases, these differ-
ences corresponded to a correct dependency ranked below the cut line, thus
highlighting the importance of determining an accurate ranking strategy.
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For Derby, the precision and recall improvements due to the LA mech-
anism reached average absolute improvements of 0.28, with a maximum of
0.79. In light of these improvements, the number of incorrectly predicted
dependencies decreased approximately one or two orders of magnitude, pre-
dicting at most 30 mistaken dependencies. In the best case, only two incorrect
predictions were made.

For Hibernate, precision exhibited absolute improvements ranging be-
tween 0.47 and 0.86. Similar to Derby, the number of wrong predictions de-
creased approximately one or two orders of magnitude, with a maximum of
183 incorrectly predicted dependencies. Note that for filtering, at most 1400
incorrect dependencies were predicted. In the case of hibernate-5.1.0-
hibernate-5.2.0-hibernate-5.3.0, precision was perfect, implying that
all predictions were correct. Nonetheless, such perfect precision was not ac-
companied by a perfect recall, suggesting that some correct predictions were
ranked below the cut line.

At last, for Weka, the LA mechanism achieved a lower recall for weka-

3.3.0-weka-3.4.0-weka-3.5.0, which can be explained by ranking correct
predictions below the cut line. In all cases, even though precision scores were
low, they were improved in average by 115%. nDCG results were similar for
all version pairs. This implies that both the filtering and the LA mechanism
produce similar ranking of the correct predictions, while an adequate com-
putation of the number of predictions to make helps to reduce the number
of false smells.

Experiment #6: HLD Prediction with Feedback

As shown in Figure 7, the differences in precision, recall, and nDCG
between the filtering and the LA mechanism depended on the system under
analysis. As for CD prediction, the overall trend suggests that the LA mecha-
nism allows discarding false smells, as shown by the precision improvements.
Moreover, the nDCG values indicate that, in general, the LA mechanism
helps to improve the position of the relevant smells in the ranking.

In the case of Ant, the LA mechanism outperformed filtering in terms
of precision for all but one sets of versions. For such versions, recall also
decreased due to the ranking of correct predictions below the cut line. How-
ever, the ranking did not seem to affect the nDCG values significantly. This
could be related to the actual number of hubs to predict. Unlike the CD
smells, in which there were dozens or hundreds of dependencies to predict,
in this case, the number of predictable smells is lower than 10, representing
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less than 8% of the total elements in the system.
For Camel, the LA mechanism achieved a lower recall for one set of ver-

sions than the filtering. This was caused by the fact that a missing hub was
found (as the higher recall for the filtering results showed), but it was ranked
below the cut line. The LA mechanism obtained the same precision and
recall results as the filtering for two sets of versions. This situation was re-
lated to overestimating the number of smells to predict. Hence, the one smell
that could be predicted was indeed predicted, but two additional incorrect
predictions were made. In this case, precision showed average absolute im-
provements of 0.13, with a maximum difference of 0.33. The number of false
positives was reduced in one order of magnitude, with at most 4 incorrect
predictions, representing 5% of the total elements of the system.

In Cxf, for two sets of versions, even though the LA mechanism improved
the filtering precision, it was at the expense of reducing the recall due to bad
decisions in the ranking. Compared with the other systems, Cxf achieved the
lowest nDCG results. These performance differences across systems show the
sensitivity of the LA mechanism and ranking strategy to the underlying char-
acteristics of the systems. Precision improvements had an average absolute
value of 0.1, with a maximum improvement of 0.23. The number of incorrect
predictions was reduced on average by 63%, making at most 12 incorrect
predictions, representing 3% of all elements in the system. Note that this
was the highest absolute number of incorrect predictions.

In Derby, for derby-10.6.1.0-derby-10.7.1.1-derby-10.8.1.2, the LA
mechanism failed to discover the predictable hubs due to mistakes in the
ranking positions. In all the other cases, recall was maintained, with aver-
age absolute precision improvements of 0.14 and a maximum of 0.21. Due
to these improvements, the number of incorrectly predicted hubs decreased
85%, making at most 6 incorrect predictions. The nDCG results showed that
the correct recommendations were consistently ranked above all the incorrect
ones.

Similarly as for Cxf, for one set of Hibernate versions, even though preci-
sion was improved, recall decreased due to difficulties for producing an accu-
rate ranking. For hibernate-5.0.0-hibernate-5.1.0-hibernate-5.2.0,
precision improvements are proportionally higher than nDCG improvements
showing that the ranking placed incorrect predictions in the top positions
while correct predictions were ranked lower. Similar to the other systems,
the highest improvements were observed for precision, with an average abso-
lute improvement of 0.21.
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In the case of Weka, precision decreased for the two version pairs that
achieved perfect precision for the filtering mechanism, while recall greatly
increased. These results showed that introducing the LA mechanism help
improving the recall of the model by finding some or all of the missing
dependencies, and thus the missing smells. This can also be observed for
versions weka-3.4.0-weka-3.5.0-weka-3.6.0, in which the LA mechanism
found one of the predictable smells. Unlike the other systems, the highest
average improvements were observed for recall, with an average absolute im-
provement of 0.39, followed by nDCG with an average absolute improvement
of 0.30.

With the exception of Weka, the combination of perfect precision with
lower recall was not observed in any case. In this sense, it can be stated
that, in general, the ranking length determined for the experiments did not
underestimate the number of predictable smells. On the contrary, in some
cases, such number was over-estimated with negative consequences in preci-
sion. The drop in recall, and especially the low results for Cxf and the minor
nDCG differences for Weka, highlight the importance of adequately defining
the ranking strategy.

Experiment #7: UD Prediction with Feedback

The effects of the LA feedback mechanism for predicting UD smells are
shown in Figure 8. In the case of Ant and Camel, the LA mechanism re-
duced the number of false positives of the filtering. For both systems, perfect
precision and recall were achieved. These results imply that correct predic-
tions were ranked above the incorrect ones and that the number of smells to
predict was accurately estimated.

For cxf-2.5.0-cxf-2.6.0-cxf-2.7.0 in Cxf, the LA mechanism could
not find the new UD smells, while the filtering found them. This was
caused by the order of the elements in the ranking. In turn, for cxf-2.1.0-
cxf-2.2.0-cxf-2.3.0 the LA mechanism improved both precision and nDCG,
while maintaining the recall.

Regarding Derby, the LA mechanism achieved perfect precision while
maintaining the same recall level of the filtering. This implies that the rank-
ing strategy placed the correct predictions above the incorrect ones. Nonethe-
less, as in some cases, recall was not perfect, neither for the filtering nor the
LA mechanism, some smells could not be predicted due to mistakes in the
first phase.

The results for Hibernate exhibited two different behaviors. First, for
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hibernate-5.0.0-hibernate-5.1.0-hibernate-5.2.0 and hibernate5.2-

.0-hibernate-5.3.0-hibernate-5.4.0, the LA mechanism improved both
the precision and nDCG values of the filtering variant. Proportionally, the
increment in nDCG was higher than that of precision, showing that the cor-
rect predictions were ranked in higher positions despite false positives. Then,
for hibernate-5.1.0-hibernate5.2.0-hibernate-5.3.0, precision was im-
proved while recall decreased due to the ranking order.

For Weka, in all cases recall was maintained, while precision was improved
in average 0.10, which represents an improvement of 72%. Similarly as for
the CD smell, in general, nDCG was only slightly improved. These results
showed that the LA mechanism mostly helped in reducing the number of
incorrectly predicted smells.

Finally, from Experiments #5, #6, and #7, we can answer RQ3 by
saying that precision was consistently improved for every smell type due to
reductions of the false positive rate when using the LA feedback mechanism.
On one side, the differences between both variants were mainly in terms of
precision and nDCG. Precision values went from an average of 0.2 to 0.3−0.7
with the LA mechanism.

The significance of the observed differences was analyzed with the Wilco-
xon test for related samples. For this test, the null and alternative hypotheses
were defined. The null hypothesis stated that no difference existed between
the results observed for filtering or the LA feedback mechanism, i.e., ranking
and reductions in the number of smells presented to the engineer did not
significantly affect prediction performance. On the contrary, the alternative
hypothesis stated that the differences among the results observed for the
different alternatives were significant and non-incidental. Results showed
with a confidence of 0.01 that applying the LA feedback mechanism allowed
to significantly improve the filtering performance for the three types of smells.
As expected, the highest effect was observed for both precision and nDCG
(with medium to large effects), while recall differences were negligible in most
cases.

5.6. Threats to Validity

The performed study involves some threats to validity. Regarding internal
validity, a first threat refers to extracting the static dependency graph and the
smell identification. The rules for identifying ASs were based on guidelines
from the literature. However, using different parameters for the ASs (e.g.,
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the median value for HLD, the size limit for CD, or instability values for
UD) could have led to other dependency graphs and a different number of
AS instances in the versions. Furthermore, as several pre-releases or patches
might have been disregarded between the selected minor versions, we might
have missed some information in the pairs of analyzed versions.

Second, although we acknowledge that not all version ranges are suitable
for having good predictions, the relations between them and the features
included in the classification model might need further analysis. Features
could have also favored predictions for some smell types. Third, the de-
tection capabilities of the filters have some limitations. Filters rely on the
newly predicted dependencies based on the existing packages of the system
versions. This implies that there might be smells that the filters cannot
discover, as they might also depend on changes caused by dependencies that
cannot be predicted as they involve non-existing packages. Hence, we believe
that alternative ASs filters should be investigated.

Fourth, we considered each system package to be a different module.
However, this assumption might not hold in all systems due to code organi-
zation aspects. The criterion for identifying modules (from the code) or the
granularity at which they are considered changes the graph structure, and
consequently, it might affect the LP task. Constructing dependency graphs
from systems written in different programming languages (e.g., C, C++ or
Python) might also impact on the features of the datasets.

Regarding external validity, we performed an evaluation on a moderate
sample of open-source systems. Nonetheless, we can identify a first threat
related to user validation of both the detected ASs and the rankings of pre-
dicted ASs. Not all smell configurations in the dependency graphs might be
“real” smells in the engineers’ eyes. There are also cases where some smells
are not harmful or might correspond to good design decisions. Second, we did
not analyze in detail the issues, changes, and possible refactorings associated
with the selected system versions. More experiments need to be conducted to
generalize the trends observed in the experiments, particularly for commer-
cial systems. Furthermore, these experiments should include systems using
programming languages other than Java.

At last, the three types of ASs currently supported by the approach could
be extended to other types of dependency-based smells or even to concern-
based smells (Garcia et al., 2009).

38



6. Related Work

Several characterizations and catalogs of AS have been reported in the
literature (Mo et al., 2015; Garcia et al., 2009). Most of these works cate-
gorize certain smells as related to undesired dependencies between software
components.

Dependency graphs are a typical representation of software elements and
their relations, often built using static analysis of source code or other ar-
tifacts, which can be assimilated to social networks. Over the last years,
SNA has developed its own set of techniques, algorithms, and metrics for
modeling nature and human phenomena. Software Engineering researchers
have started leveraging the power of SNA to understand different aspects
of the software development process. For example, research has focused on
studying how developers collaborate (Manteli et al., 2012), the interplay of
dependencies among technical artifacts and their creators, or how decisions
about organizational structure or the development process affect communi-
ties of developers.

Social Network Analysis techniques have been applied to study depen-
dency graphs to predict software evolution (Terra et al., 2013), the appear-
ance of defects and bugs (Zimmermann and Nagappan, 2008), and the exis-
tence of vulnerable components (Nguyen and Tran, 2010). Regarding soft-
ware evolution and low-level design, Terra et al. (2013) used LP techniques
to infer the package in which a particular class should be located during a
refactoring process. At last, Zimmermann and Nagappan (2008) concluded
that metrics assessing the local neighborhood of nodes contribute better than
global metrics to understanding software systems. Additionally, they stated
that network metrics are better descriptors of software defects than source
code metrics. Finally, Nguyen and Tran (2010) derived metrics from the com-
ponent dependency graph to predict vulnerable components. In all cases, the
authors agreed that the topological analysis of dependency graphs could re-
veal (or even predict) interesting properties of software systems. However,
these works are mostly descriptive, and there is no intent to predict future
system states.

Several automated techniques for detecting smells have been proposed,
which differ in the algorithm, the applied heuristics or rules, and the metrics
considered. Smell detection tools have adopted ML approaches for predict-
ing the existence of a given type of smell based on features describing the
source code. The most notable advances were proposed in (Arcelli Fontana
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et al., 2016), in which an evaluation of 32 ML algorithms for detecting four
types of code smells on 74 systems was reported. Classifiers were trained
based on object-oriented metrics at method, class, package, and project lev-
els. For selecting the smells to train the classifiers, the authors used freely
available tools, and the severity of each smell was manually defined. Ex-
periments showed a high classification performance, guiding the authors to
conclude that ML is a feasible approach for smell detection. However, the
approach presented some drawbacks that might affect the generalization of
results (Nucci et al., 2018). The classifiers seemed to neglect the structural
characteristics of smelly and non-smelly components and were trained to
detect smells in unrealistic conditions.

Our approach differs from the previously described works in two aspects.
First, we are concerned with dependency-based ASs rather than with code
smells. Second, our approach predicts relations among components and the
appearance of new smells instead of inferring component characteristics (such
as defects, bugs, or vulnerabilities). Moreover, whereas other techniques
focused on identifying smells that already exist in the system, our approach
tries to anticipate smells that do not exist yet but have high chances of
affecting the system in future versions.

7. Conclusions

In this work, we develop an approach based on LP techniques and a
classification model for predicting AS instances that are likely to appear in a
system. This predictive capability is the main contribution of the work. The
approach is designed as a pipeline with three phases, in which a dependency
classification model works in tandem with a set of smell filters (per type of
smell) and an LA mechanism.

An exploratory evaluation with three types of smells in six open-source
systems showed average precision and recall values of 0.3 and 0.9 regarding
the identification of the real smells. The performance effect of the first phase
is due to the inclusion of content-based features in the classification model.
As for the second phase, we found evidence that smell filters alone can lead to
high recall but low precision values regarding the predicted smells. Although
good recall is usually preferred over good precision, reducing the number
of false positives is desirable. An LA mechanism was incorporated into the
approach to improve the precision of smell prediction. The evaluation of this
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LA mechanism showed improvements in the precision results of up to three
times, with only minor (or none) drops in recall.

In future work, we plan to perform an evaluation with more systems
(both commercial and open-source) and include user studies to corroborate
the findings of this work. The current approach presents some limitations
that should be addressed. First, predictions only work for existing packages
between consecutive versions. However, we acknowledge that packages could
be renamed or even re-grouped from one version to another. In this sense, we
intend to reuse the content-based similarity criteria so that a predicted de-
pendency for any given pair of packages could be extended to other packages
being similar to those of the pair. Second, the approach supports predictions
of a binary nature for a pair of packages, i.e., a dependency will or will not ap-
pear in the next version. However, there are situations in which two packages
have a dependency, but they become more coupled over time. We believe the
LP task can be adapted to this case by predicting whether a given depen-
dency will strengthen in the next version. Third, we will investigate whether
classification models for recognizing different smells can be devised to sub-
stitute for the detection rules and the filters. Furthermore, a classification
model for ASs could also distinguish which smells are relevant to engineers.
Finally, another line of future work is integrating the approach with existing
tools or research prototypes, such as SonarQube or Arcan (Fontana et al.,
2017).
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