
Applying Social Network Analysis Techniques to
Architectural Smell Prediction

Antonela Tommasel
ISISTAN, CONICET-UNICEN. Argentina

antonela.tommasel@isistan.unicen.edu.ar

Abstract—As a software system evolves, the amount and
complexity of the interactions amongst its components is likely
to increase, which negatively affects the system design structure
and also its quality. For instance, certain modules might become
coupled due to a new user feature being added or to sub-
optimal development decisions. Design degradation symptoms are
often related to high coupling and unwanted dependencies, such
as: cyclic dependencies or violations to design rules, amongst
other architectural smells. Thus, the early detection of such
symptoms is important for architects to: i) anticipate dependency-
related design problems in different parts of the system, ii) assess
possible situations of technical debt, and iii) proactively look for
solutions to preserve the quality of the system. Although there
are approaches that analyse design dependencies in code bases
and flag smell occurrences, very few of them have dealt with the
prediction of dependency relations amongst software compon-
ents. This research hypothesises that a predictive approach can
warn architects about dependency-related problems before they
appear. To this end, a particular graph-based approach is social
networks analysis (SNA), which has been used for modelling
both nature and human phenomena. Specifically, SNA techniques
can predict links that do not yet exist between pairs of nodes
in a network. SNA applications have shown evidence that the
topological features of dependency graphs can reveal interesting
properties of the software system under analysis. Nonetheless,
SNA techniques have not yet been extensively exploited in the
Software Architecture community. In this context, the question
that motivates this research is to what extent SNA can leverage
on information from a software design (and its evolution over
time) for inferring new dependencies and likely configurations of
architectural smells out of those dependencies.

I. INTRODUCTION AND MOTIVATION

The high development costs motivate the evolution and

adaptation of existing systems, rather than the development

of entirely new systems, in order to meet new requirements

(e.g., a functional feature) and deal with environment changes

(e.g., a need to run on a new platform or to integrate with

other system). Nowadays, it is common for systems to be

upgraded and maintained over spans of several years. To be

successful, software evolution must be carefully managed and

executed [11, 23]. However, as a software system evolves,

the number and complexity of the interactions amongst its

components is likely to increase, which negatively affects the

system design structure, but also key system qualities such

as: correctness, performance, reliability or maintainability. For

instance, certain modules might become coupled in a given

system version, and progressively make other modules to be

dependent on each other. These dependencies might manifest

at the architectural level as cycles amongst components, layer

bridging, or hub-like components, among other problems.

The software architecture of a system describes the software

elements of that system and their different types of relation-

ships [7]. Furthermore, the software architecture comprises

the set of design decisions that shape the solution, in order

to satisfy the quality goals posed by the system stakehold-

ers [14]. For example, the elements could be modules and the

relationships could be usage relations between those modules.

Design decisions for a module view can refer, for example,

to a layering pattern or to modifiability principles of cohesion

and coupling that the modules must adhere to. The architecture

is crucial for software maintenance and evolution [17]. It has

been shown that poor architecture choices are an important

source of technical debt [7]. Nonetheless, the architecture can

become less useful if its prescriptions are not reflected in

the code. Since documented architectures are generally non-

existing or outdated for many software projects, it is common

for architects to rely on the implemented architecture for

different analyses, such as the identification of architectural

smells. In this context, this research focuses on the view of

software architecture as realised in source code.

Architectural smells can be defined as a combination of

architectural constructs often leading to system maintainability

problems [11] or other quality problems. They manifest as

violations of well-known Software Engineering principles and

have repeatable forms that enable a potential automated de-

tection. In the last decade, research has been devoted to study

how smells are introduced, how they evolve and what their

effect is on program comprehension [22]. However, research

on how to predict the appearance of architectural smells, given

the structural characteristics of systems, has been scarce.

The early detection of architectural smells is important for

architects, so that they can plan ahead for actions to stop

system degradation and preserve system quality. In this regard,

several tools exist for assessing whether the right dependencies

amongst system modules are in place, including LattixDSM,

SonarQube or SonarGraph [13], amongst others. These tools

normally extract dependency graphs from the source code

to compute different metrics (e.g, average component de-

pendency, or package cyclicity) that provide indicators of the

system health. Some tools can also bring problems, such as ar-

chitectural violations, cycles or other smells, to the architect’s

attention. A limitation of this approach is that such tools are

only able to analyse the dependencies that exist in the system,

meaning that problems are detected once they have appeared.

In this situation, evidence suggests that developers can be
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reluctant to fix problems once they are already in the code [1].

Some of the tools provide "just-in-time" detection capabilities,

which might help developers to fix specific smells in a local

design context. However, this capability is not always helpful

when architects want to assess the different smells of the

system with a global design perspective. In a forward-looking

scenario, architects would want to know which modules are

likely to be coupled in the near future, and which smells are

more harmful for the system. This architecture-level analysis

requires to anticipate dependency-related problems in order to

proactively look for solutions.

In order to make predictions about software design depend-

encies, a particular graph-based approach is Social Networks

Analysis (SNA), which refers to a strategy for analysing

social structures through network and graph theories [16].

SNA studies to what extent the evolution of a network can be

modelled by using features intrinsic to the network [16]. One

particular task is known as Link Prediction (LP), and aims

at inferring missing links between two nodes in a network

based on the observable interactions (or links) amongst nodes

and node attributes, when available. Due to its relevance

in different domains, several techniques have been proposed

to solve the LP problem, usually based on graph structural

features that assess similarity between pairs of nodes. As

software architectures comprise components that interact with

each other, it is natural to model architectures as graphs. In

fact, a module view can be modelled as a dependency graph,

in which nodes represent modules and directed edges represent

usage relations. These relations can be inferred from the code

via static analysis. However, software design networks could

have a different dynamic from traditional social networks.

The motivations for this research come from the lack

of studies investigating the potential of SNA not only for

describing software design structures, but also for predicting

their evolution or properties. The analysis then would not just

be limited to characterising design elements (e.g. packages,

components) and their dependencies, but to how design in-

formation can be used to provide insights about future system

versions. This knowledge would support predictive capabilities

for architects’ decisions regarding system refactorings or other

strategies for dealing with technical debt in the system. In this

context, the goal of this research is to use SNA techniques
along with information from current and past design structures
of a system for inferring possible architectural smells in terms
of configurations of design dependencies.

II. RESEARCH QUESTIONS

This research departs from the hypothesis that software

systems and their underlying architectures behave, to some

extent, as social networks. Therefore, it is possible to predict

some types of changes in the system design structure based

on the appearance of dependencies amongst design elements.

In particular, the focus is on changes that result in prob-

lematic configurations, such as dependency-based architectural

smells [15]. This hypothesis poses several research questions.

• RQ1. How do architectural smells evolve over system
versions, in terms of increasing or decreasing their de-
pendency configurations?

For instance, given a package cycle at version t, it can be

analysed whether the cycle will grow in successive versions

(due to additional dependencies being added to the smell). A

bigger cycle could indicate that the smell got worse, and thus,

its prediction is worthwhile. Some initial findings about cycles

in Java applications suggest this trend [19]. Also, the causes

for cycles getting better (or worse) due to both existing and

new dependencies should be tracked. A similar analysis can

be performed for other architectural smells.

• RQ2. What criteria are useful for assessing similarity of
design elements with respect to link prediction?

Traditional LP techniques are primary based on determining

whether two elements are likely to interact in the future based

on a similarity score. This score is supported by the homophily

principle, which states that similar elements are more likely

to interact than dissimilar ones. In a software design context,

homophily would mean, for example, that similar modules are

more likely to establish dependencies than dissimilar modules.

However, given that homophily was inspired by human rela-

tions, it remains to be evaluated whether it applies to design

structures. For instance, two similar modules can intentionally

be designed to not become dependent on each other, based

on business logic or modularity reasons. Conversely, depend-

encies might still appear between dissimilar modules. Thus,

there is a need to adjust the homophily principle and learn

"exceptions" for software designs.

• RQ3. Can past system versions affect, and improve the
predictions of, the design structure of a future version?

In principle, the prediction of the appearance of dependencies

or architectural smells can rely on characteristics of the

current system, such as: structural design aspects, or features

of individual design elements. Nonetheless, previous system

versions can provide further information for the predictions.

This is so because LP techniques often learn both from existing

and non-existing relations amongst graph elements. Some of

these relations come inevitably from the system history. In

fact, there are several studies about the influence of past system

versions on phenomena observed in the present system [24]. In

particular, the architectural violations for a given system ver-

sion can be inferred from problems in previous versions [18].

• RQ4. To what extent Machine Learning techniques can
aid in the prediction of architectural smells?

The LP problem can be cast as a classification problem in

which a prediction model is built based on different inform-

ation taken from the graph. In this setting, the classification

model learns about both the existence and absence of relations

between the different pairs of nodes in the dependency graph.

These types of techniques allow to further leverage on the

system history to make predictions, for instance, to deal

with alternatives to the homophily principle discussed above.

Nonetheless, predictions are probably not going to be perfect.

In this regard, the technique might predict dependencies that
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are not actually going to exist, or be unable to predict actual

future dependencies. In other words, a simple detection of

predicted dependencies might not be sufficient to determine

how architectural smells will behave on the future. For in-

stance, if two usage relations for modules are to be predicted,

it does necessarily mean that a new (non-existing) cycle will be

closed. For this reason, each type of smell requires to consider

the predicted dependencies in context.

III. RELATED WORKS

Social networks can covey different meanings. Often, they

represent social media and social networking sites, such as

Facebook or Twitter. From a broader perspective, social net-

works refer to the graph structures comprising social actors

and their connections, thus reflecting the roles of actors and the

patterns and anti-patterns of relations. In this sense, SNA has

emerged as an interesting and challenging research field [27].
In the Software Engineering domain, social networks can

be extracted from the archives of a software project to better

understand the project, the ecosystem, or different software

engineering practices [12]. This social perspective can be

effective for shedding light on the technical aspects of the

work. For example, focusing on the people involved in the

engineering processes, it has been studied how developers

collaborate, the interplay of dependencies amongst technical

artifacts and their creators, or how decisions about organiza-

tional structure affect the social structure of developers. Other

works have used social networks for representing software

dependency graphs in order to study software evolution [28, 6],

defects, bugs [30], and vulnerable components [21]. Most

works are of a descriptive nature, i.e. the analysis is made

with a full knowledge of the software structure and there is

no intent of predicting future system states.
As regards software evolution and low-level design, Terra

et al. [28] used LP techniques to predict the package in

which a particular class should be located during a refactoring

process. Bhattacharya et al. [6] identified a set of global graph

metrics to describe dependency graphs and determining which

components one should debug, test or refactor first. Nguyen

et al. [20] studied the performance of topological similarity

metrics to predict bug proneness. Finally, Zimmermann and

Nagappan [30] concluded that metrics assessing the local

neighbourhood of nodes contribute better than global metrics

to the understanding of software systems. Additionally, they

stated that network metrics are better descriptors of software

defects than source code metrics. However, SNA techniques

have not yet been exploited for the prediction of software

dependencies at the design level. Instead, prediction has been

traditionally based on domain information or object-oriented

metrics. For example, Aryani et al. [3] proposed a source

code independent approach based on domain information from

user manuals and help documents for predicting predict design

dependencies in the current version system.
One of the symptoms of architectural degradation and

even technical debt is the appearance of smells affecting

the overall maintainability of software systems. Amongst the

set of architectural smells, those based on class or package

dependencies are of special interest to this research. Several

automated smell detectors have been proposed, which differ in

the algorithm, the applied heuristics or rules, and the metrics

considered [13]. Nonetheless, detection techniques present

some limitations [22]. First, the agreement between detectors

is low, implying that the detectors return different smell

instances according to the considered definitions. Second,

some approaches require to specify the detection rules with

domain-specific languages. Third, most detectors require the

specification of thresholds to differentiate the smells, which

affects their performance.

To overcome the limitations and providing a more objective

detection, Machine Learning techniques have been adopted.

For example, code smell detection using classifiers has been

tackled inmostly based on training a classification model based

on rules, or object-oriented metrics. The most notable advances

were proposed in [2], in which an evaluation of 32 Machine

Learning algorithms for detecting four types of code smells on

74 systems was presented. Classifiers were trained based on

object-oriented metrics at method, class, package and project

levels. The training smells were selected using freely available

tools. Experimental evaluation showed a high classification

performance, guiding the authors to conclude that Machine

Learning is a feasible approach for smell detection. However,

the approach presented some drawbacks that might affect the

generalisation of results [22]. A first one is the characteristics

of smells and non-smells. If the characteristics of smells are

significantly different from those of the non-smells, then any

Machine Learning technique could distinguish between both.

This situation might not properly represent a real system in

which the structural characteristics of smelly and non-smelly

components might not differ. Second, each type of smell was

individually analysed, thus rendering the classification task

unrealistic as systems simultaneously comprise different types

of smells. Third, evaluation considered a balanced scenario,

which does not replicate the unbalanced nature of software

systems in terms of the number of components affected

by smells. Fourth, the authors selected independent metrics

without analysing their correlation, which might lead to a

biased evaluation due to over-fitting. Finally, Palomba et al.

[25] characterised smells not only by source code metrics,

but also by how the source code changes over time. Thus,

the authors presented a technique based on change history

informationand co-change of artifacts.

As previously stated, this research is interested in

dependency-based architectural smells rather than on code

smells. Undesired dependencies (e.g., those forming a cycle

amongst modules) have been shown to be a possible manifest-

ation of architectural debt. Thus, understanding the complexity

of dependencies could help to better understand and concep-

tualise the debt. Along this line, Le et al. [15] hypothesised

that architectural smells may be used to pinpoint the issue-

prone parts of a system, even before stakeholders bring up the

issues. To this end, the authors proposed an empirical study of

architectural decay in open-source systems based on defining

and analysing six types of smells. The selection of the smells
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was guided by the key software engineering principles and the

architectural aspects that were important to engineers, resulting

in that five out of the six selected smells were dependency-

related. The analysis confirmed that architectural smells have

tangible negative consequences, requiring increased mainten-

ance effort throughout a system lifetime.

Overall, some key differences can be identified between

the presented techniques and the proposed research. First,

the reviewed techniques have only focused on code smells,

and have paid less attention to the detection of architectural

smells. Considering that the ideas underlying code smells

could also apply to architectural smells, it might be tempting

to regard architectural smells as higher-level abstractions of

code smells [15]. However, code smells may be detected and

solved without knowledge of the architecture, which may not

be the case of architectural smells. Second, techniques have

focused on identifying smells that already exist in the system,

instead of predicting which new smells are likely to appear

in future system versions based on the system current state.

Thereby, smell prediction would allow to anticipate the effect

of current architectural decisions for preventing architectural

decay. Third, smells have been mostly characterised based

on system metrics. Generally, there are different information

sources that could be exploited, and the choice depends on the

kind of smells to be detected [24]. Conversely, this research

bases the prediction on topological and lexical characterisa-

tions of systems, and on the evolution of such characteristics

across different software versions.

IV. RESEARCH METHODS

The methodology and modelling for this research is based

on the SNA area [16]. Figure 1 schematizes the proposed ap-

proach for predicting architectural smells, from the data collec-

tion process (Section IV-A), in which dependency graphs are

mined from the collected software repositories (Section IV-B),

up to the dependency and smell prediction (Section IV-C).

Finally, this section also describes how the performance of

the predictions will be evaluated (Section IV-D).

A. Data Collection

The performance and effectiveness of the proposed predic-

tion technique will be studied by considering Java open-source

projects, in two steps. First, the performance will be evaluated

on several Apache systems with more than 10 versions, and

more than 10 contributors per version. Apache was chosen as

it is one of the largest open-source organizations and it has

produced well-maintained systems. Moreover, Apache systems

have been already used in the literature for studying archi-

tectural smells [15]. Second, performance will be evaluated

on other systems, not developed by Apache, to ensure the

generalisation of results. At the moment, preliminary research

has been conducted on Apache Camel, Apache Ant, Apache

Derby and Apache Cxf.

As the prediction of smells involves analysing multiple

system versions and the changes between them, it is neces-

sary to select which versions to include in the analysis. For

predictions to be made, consecutive versions should yield

changes between already existing components. In turn, this

selection also includes determining which type of versions

(i.e. major, minor, patch or pre-release) and evolution paths

to analyse. Nonetheless, determining the accurate evolution

path of systems is not a trivial task. Behnamghader et al. [4]

identified three frequently occurring patterns that can condition

the version selection and evolution paths. Thus, following [4],

in the case of major versions, it can be considered the

sequence involving all minor versions (from the start of one

major version to the start of the subsequent major version),

representing the total changes received by the within a single

major version. This implies the analysis of versions with

extensive changes to system’s functionality. Patches and pre-

releases will be ignored as they mostly involve bug fixes,

whilst pre-releases are merged into a posterior official version

(either major or minor ones).

Systems versions will be crawled from their corresponding

repositories. For each selected version, its source and compiled

codes will be downloaded. Given the lack of publicly available

datasets, which poses certain threats to validity, the analysis

performed over the selected systems will be publicly stored.

As a matter of fact, the processed software versions used in

preliminary evaluations are available in a public repository1.

B. Dependency Graph Representation

A prerequisite for applying LP techniques is to transform

the system under analysis into a dependency graph that cap-

tures the architecture view under analysis. The focus will be

on module views and three dependency-based architectural

smells [15], namely: cyclic dependencies, hub-like nodes, and

nodes with unstable dependencies. More formally, a depend-

ency graph is a graph DG (V,E), where each node v ∈ V
represents a module, and each edge (or link) e (v, v′) ∈ E
represents a type of dependency from node v to v′. Since
the research is oriented to Java systems, nodes correspond

to packages while edges represent the usage dependencies

between those packages. In principle, each system package

can be regarded as a different module. Nonetheless, this as-

sumption might not hold in all systems. For instance, different

sub-packages might belong to the same conceptual module.

Thus, only top-level packages will be identified as modules.

The dependency graphs for the different software versions

are extracted based on the CDA tool2 that works at the

Java bytecode level and extracts high-level information about

classes and packages in a human readable form. The tool

also identifies the different types of dependencies (e.g. uses,

implements, extends), and the package membership of classes.

This processing allows to build package dependency graphs.

Dependencies can be characterised by different kinds of

information, which could favour the predictions of particular

dependencies or types of smells. To begin, this research

focuses on topological and content-based information. On one

hand, topological information is related to the graph structure

(i.e., the package structure in this case) and the role that the

nodes (and their edges) play in that structure [16], from either a
1https://github.com/tommantonela/icsa-2018
2http://www.dependency-analyzer.org
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version Figure 1. Overview of the smell prediction proposal

local or a global point of view. In this context, several features

can be defined to assess the structural or topological similarity

of two elements. For example, Common Neighbours is defined

as the number of common adjacent nodes (i.e. neighbours) that

two nodes have in common, aiming at capturing the notion

that two disconnected elements who share neighbours would

be “introduced” to each other.

On the other hand, content-based information provides an

alternative (and complementary) similarity criterion to topo-

logical features. For example, one of the simplest strategies

is to compute the lexical overlap between texts. Natural

language processing routines are used to transform texts into

their bag-of-words representations [26], which can be built by

considering different aspects of the original texts. For instance,

representations could be restricted to only the appearing nouns,

adjective or verbs, or could choose to remove all punctuation.

In the software domain, each Java class or package can be

regarded as a bag-of-words containing the most representative

tokens that characterise its source code, e.g. identifiers, meth-

ods’ names and comments. According to Palomba et al. [24]

lexical properties can help in the identification of linguistic

anti-patterns that could be related to the existence of smells

by distinguishing between nouns, adjectives and verbs, and

identifying negative forms and dependencies between words

(e.g. the relations between subjects and predicates). It is

worth mentioning that the lexical characterisation of packages

conveys information about the system architecture. For ex-

ample, lexical and linguistic information has been used for

"reconstructing" the responsibilities of the system, and thus

reconstructing its implemented architecture [5]. Additionally,

Corazza et al. [8] defined different types of linguistic in-

formation that convey different levels of relevance, and then

contribute to an architecture reconstruction process.

C. Dependency and Smell Prediction

Based on the dependency graph and the chosen charac-

terisation of dependencies, the link prediction task takes a

DG (V,E) at time t, and then infers the edges that will be

added to DG (V,E) at time t + 1. Let U be the set of all

possible edges amongst nodes in DG (V,E). Then, the link

prediction task generates a list R of all possible edges in

U−E, and indicates whether each edge (in R) is present in
DG (V,E) at time t + 1. For the purpose of this work, only
dependencies between packages are considered. The bases of

the prediction task include three alternatives with increasing

complexity, which are discussed below.

• Ranking-based Link Prediction.
This is the simplest approach and follows directly from the

homophily principle, giving a baseline for the research. In

this alternative, all non-observed dependencies for a package

p are ranked according to their scores. Due to homophily, the

dependencies connecting more similar packages are supposed

to have a higher appearance likelihood. Despite its simplicity,

the definition of similarity is not trivial. As the metrics are

defined based on diverse assumptions, it is expected that

different metrics will lead to different predictive results. The

output of this alternative for a given package p is a ranking

with the top-N packages that are likely to connect to p.
This alternative assesses the structural similarity of packages

by relying on different topological metrics that provide global

or local information of the network [16]. The metrics to

be considered are: Adamic-Adar, Common Neighbours, Katz

Score, Resource Allocation, SimRank, and Sørensen. The best

performing metrics from [28]: Kulczynski, RelativeMatching,

and RusselRao, are also considered. In addition, content-based

metrics will be included. Particularly, the Cosine Similarity

scores for different bag-of-words representations (e.g. com-

ments, method invocations, variable names) can be employed.

• Machine Learning Link Prediction.
In this alternative, a binary classifier is trained using the

information provided by a number of graph versions. Whilst

the previous alternative is solely based on the information of

the existing dependencies, this alternative leverages also on the

information provided by the absence of dependencies between

pairs of packages. In this context, both the dependency graphs

corresponding to the current and previous versions (named vt
and vt−1 respectively) are required as inputs.

To train a classification model, the dependency graphs are

converted into a set of input instances, called dataset. Each

instance consists of: a given pair of nodes, a list of features

characterizing the pair, and a label that indicates whether a

dependency exists between the nodes. In this context, the

training set comprises instances belonging to the two system

versions: existing dependencies in vt−1 (as instances of the

positive class), missing dependencies in vt−1 (as instances

of the negative class) and existing dependencies in vt. It is
worth noting that the information from the system versions
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serves to train the classifier for properly learning instances

of both the positive and negative classes. This mechanism

allows to include information of dependencies in vt−1 that are

guaranteed not to appear in the next version (vt). If only one

system were considered, no information regarding the negative

class could be included in the model training, as it would

not possible to guarantee that non existing dependencies are

not going to appear in the next version. Similarly as for the

previous alternative, the pairs of packages are characterised

based on both topological and content-based features.
Once the model is trained, it predicts which dependencies

that do not exist in vt could appear in vt+1. Note that these

might not be the only dependencies that will be added in vt+1,

as dependencies between packages that did not originally exist

in vt could also appear. Although it is possible to predict that
an existing package will depend on an unobserved package, it

is not possible to determine what that unknown package will

be. This means that only potential dependencies considering

the packages already existing in vt are considered.
It is worth noting that both the training and test datasets

present the real class distribution of the system versions, as

negative instances are not under-sampled nor artificial positive

instances are introduced. This allows to keep the bias by

dataset manipulation to a minimum. Classification could be

performed using the Weka3 implementation of the Support

Vector Machine (SVM) algorithm, parametrized with a RBF

kernel, which is useful for unbalanced datasets.

• Time Series Forecasting.
A time series is a sequence of values of a variable (or feature)

taken at successive times (system versions in our case), often

with equal intervals between them. One of the particularities

is that data is not necessarily independent nor necessarily

identically distributed, highlighting the importance of the order

of the data. This alternative combines dynamic SNA with

topological features to learn a robust model able to predict

new links. In this case, each version represents a moment in

time t. As in the previous alternative, for each system version

different features are computed for each pair of packages. For

estimating the scores for version vt+1, the scores observed

in previous versions (e.g. t1 to tn) are used as input for

the technique. However, not every historical point might be

of interest for the forecasting. For example, if a refactoring

greatly affected the system structure, information from prior

versions might not be representative of the actual system

structure nor future ones. Hence, the performance of this

alternative depends on the selection of the window of previous

versions. Then, for each feature, time series forecasting models

based on the scores of each of the known system versions are

used to estimate the feature scores for the next system version.

Finally, the estimated feature values are used to predict new

dependencies. Predictions are based on a classifier trained with

the last known version of the system, vt. The forecasting was
based on the Gaussian Processes model implemented in Weka.

The fact that any of the three alternatives above predicts

whether an individual dependency is likely to appear is helpful,
3https://www.cs.waikato.ac.nz/ml/weka

but it is not enough to predict the appearance of a new

architectural smell, as not every predicted dependency might

cause a new smell to emerge. Usually, the emerging smells

are the result of a group of new and existing dependencies.

Hence, for predicting the occurrence of a new smell, predicted

dependencies should be filtered according to some criterion.

It is worth noting that the prediction of dependencies might

be affected by missed dependencies that should have been

predicted or the prediction of mistaken dependencies. The

filtering process is dependent on the type of smell to detect.
For example, a cycle filter considers only predicted depend-

encies that lead to the closure of new cycles in vt+1. The

predicted dependencies could be considered all altogether, and

simultaneously added to graph at vt+1, before checking for

cycles. As another example, a hub filter could consider the

nodes incidental to the predicted dependencies that fit with

the hub definition in the literature. For each node that is

incidental to at least one predicted dependency, all its actual

and predicted dependencies are analysed together to compute

the hub score of the node. Note that this strategy allows the

detection of those nodes becoming hubs due to the addition

of new dependencies, but disregards nodes that might become

hubs due to changes in the overall structure of the dependency

graph (i.e. nodes for which no new dependencies are added).
The described prediction and filtering alternatives foresee

that all predicted smells are presented to the architect, which

could result in mistaken prediction of some smells (false

positives). Hence, once smells are predicted and ranked, it is

necessary to define which of them are going to be presented

in order to reduce the mistaken predictions. Nonetheless,

choosing the number of smells to recommend might not be

easy [29]. The simplest method is to set a fixed threshold

and always recommend the same number of smells, based on:

relevancy scores, a percentage of instances, or the number of

predicted items. This method has several drawbacks. First, it

ignores the characteristics of the task at hand. For example, it

does not consider the history of smell appearance in previous

versions. Moreover, a number higher to that of the actual

elements to find could be chosen, with the corresponding de-

crease of precision, as inevitability mistaken recommendations

will be made. Second, thresholds based on fixed relevancy

scores might fail to acknowledge the possibility of rankings

presenting different score distributions. For these reasons, the

number of smells to predict will be chosen according to the

history of discoverable smells in the previous versions.

D. Evaluation
The evaluation of the proposed prediction techniques

is based on traditional evaluation metrics from the SNA

area [29]. For all the alternatives presented, performance will

be evaluated by comparing the predicted results with the real

results of the next system version. In other words, predictions

will be made over vt and their predictive performance will

be evaluated considering vt+1. Given that the prediction of

architectural smells builds on the prediction of individual de-

pendencies, and the results of the dependency predictions can

influence the smells prediction, the evaluation comprises two
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steps: an evaluation of the quality of dependency predictions,

and then an evaluation of smell predictions per se. As regards

the dependency prediction, in the case of the ranking-based

alternative, the quality of predictions will be evaluated in terms

of precision (the percentage of actual dependencies that is

discovered by the technique with respect to the total number

of predicted dependencies), recall (the percentage of actual

dependencies that is discovered by the technique with respect

to the total number of new dependencies appearing in vt+1),

and the Normalized Discounted cumulative gain (NDCG)

considering the top-N dependency predictions. As the actual

number of dependencies to discover is known in advance, to

reduce the sensitivity of results due to an inadequate selection

of N , it is set to the 10%, 20%, 25% and 100% of the number

of dependencies to discover. Then, the overall performance of

the algorithm will be computed as the aggregation of the scores

of the multiple packages for each list of length N .

As regards the other alternatives, in typical binary clas-

sification tasks, classes are expected to be approximately

balanced, implying that the expectations for baseline classifier

performance can be easily computed by traditional accur-

acy, precision and recall metrics. Nonetheless, classification

problems that exhibit class imbalance (as the link prediction

problem) do not share this property and the expectation

for the classification metrics diverges for random and trivial

classifiers. As a result, accuracy is problematic as its value

approaches the perfect score for trivial predictors that always

return false (in this case, meaning that the dependency or

smell is not going to appear). At the same time, the correct

classification of positive instances is more important as those

instances represent the exceptional cases. When applied to the

software design domain, it is more important to accurately

determining that a few dependencies or smells will appear, that

determining that hundreds of dependencies will not appear. In

turn, this situation causes recall to be more important that

precision, as it is preferable to detect the highest number of

correct dependencies, at the expenses of also identifying some

mistaken dependencies or smells to be analysed (and maybe

discarded) by the architect. In this regard, the areas under ROC

and PR curves are more adequate performance metrics [29].

The evaluation of the predictive capabilities of the three pro-

posed alternatives will also allow to compare the descriptive

power of each of the features selected for describing the pairs

of packages. Particularly, it could be analysed whether topolo-

gical similarity metrics are enough for assessing the similarity

between software modules or it is necessary to consider also

content-based features, amongst other possibilities. In turn, this

exercise would allow to answer RQ2.

Regarding the prediction of architectural smells, perform-

ance will be evaluated based on precision, recall and PR

curves. Similarly as for the prediction of dependencies, the

correct identification of the positive instances (i.e. smells)

is more important than that of negative instances (i.e. non-

occurring smells). As a result, good recall is preferable over

good precision. The smell prediction, in combination with

the dependency prediction alternatives considering information

from past system versions, would allow to study how design

structures evolve and to what degree the system versions

depend on the past structures and changes. Furthermore, the

mistaken predictions could help to understand deviations from

the expected design structure that could hint other configura-

tions of smells. In turn, this exercise would allow answering

RQ3. In summary, this final evaluation will point to answering

RQ4 regarding the feasibility of Machine Learning techniques

for predicting architectural smells.
At last, once the technique is refined and a tool is developed,

it is expected to evaluate the performance and capabilities of

the proposed techniques in real projects with architects.

V. EXPECTED CONTRIBUTIONS

The contributions resulting from this research are manifold.

It builds on the advances of SNA and Machine Learning

techniques to provide insights regarding how software design

structures evolve, particularly in terms of degradation symp-

toms. The primary intended outcome of this research is a

predictive approach that would allow architects to spot a set

of dependency-related problems that are likely to appear in a

given system. These problems are captured as architectural

smells. Being able to anticipate architectural smells is im-

portant because architects can proactively look for solutions.

In this regard, the approach could also allow simulating

(dependency-related) decisions affecting the design structure

to observe their potential effects in future system versions.

Note that this kind of predictions differs from the checks

provided by current tools for architecture conformance. The

proposed approach provides a global view of several smells

that might affect the design structure, while conformance tools

usually take an operational perspective and aim at alerting

developers about the appearance of local smells in the code. A

a related line of research is to apply the predictive techniques

for estimating dependency-related metrics of the system under

analysis. In general, all these predictions contribute to assess

and manage the architecture technical debt of systems.
To be useful for practitioners, as well as for assessing the

relevance of recommendations in applications, the technique is

planned to be integrated into a tool in the form of an Eclipse

plugin. The tool should take as input the Java source code

of at least two software versions, and produce as output a

list of the predicted dependencies and a ranking of likely

smells. In an initial prototype, the tool will provide support for

three dependency-based smells (i.e., cycles, hubs, and unstable

dependencies). The tool should also allow to compute and

visualise traditional software metrics as a complement to the

predictions. The user (architect) will have several configuration

options, such as: the granularity of the analysis (dependency or

smell), the information to consider in the analysis (topological,

content-based or even software metrics), the technique for

making predictions described in the previous sections, or

whether to include software history in the analysis in the case

the technique requires it. Furthermore, the user will be able

to select components to exclude from the predictive analysis

(e.g., third-party libraries or specific components that are not

expected to be modified on the next version).
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Each time the user runs the analysis, the source code will

be assumed to represent a new system version. If predictions

have already been made, this new version will be used as

feedback to check whether predictions became true (i.e. the

dependencies or smells that were predicted actually appeared).

Once predictions are made, the user will be able to interact

with them. The dependencies or smells will be ranked accord-

ing to the confidence of the prediction (e.g. the probability

given by the classifier). The user will be able to visualise the

Java elements involved in each smell, the software metrics

of the affected Java elements, and provide feedback about

predictions. As it is expected that the predictions will not be

perfect, this last type of user interaction will allow to introduce

an additional feedback mechanism to adjust the techniques and

prevent (future) mistakes.

VI. RESEARCH AGENDA

The ongoing research has primary focused on the definition

of the dependency graph and the evaluation of the depend-

ency predictor. The definition of the dependency graph was

complemented with a statistical analysis of software versions

and the evolution of SNA metrics (tackling RQ1). In this line,

it was analysed how past decisions reflected in the software

structure affect the future occurrence of dependencies, and

smells thereof (tackling RQ3). In addition, it was analysed the

descriptive power of both topological and content-based fea-

tures for defining the similarity of components (tackling RQ2).

The descriptive power of software-related metrics remains to

be evaluated. Regarding smell prediction, evaluations focused

on defining preliminary filtering strategies for cycles and hubs

(tackling RQ4).

At present, the research is oriented to perform a systematic

study with more systems (and versions) to corroborate the

initial findings reported in [9, 10]. Moreover, considering the

errors in which learned models could incur, additional studies

are being performed to introduce mechanisms of reinforcement

learning to feed the predictions with new information obtained

from the environment (or from the architect), as a means

to establish the confidence of predictions and reducing the

probability of false positives.

Once the prediction technique is fully evaluated, it will

be incorporated into a tool to evaluate the capabilities of

the approach in a study with subjects in the context of real

software projects. Finally, it is expected to include other types

of architectural smells [15] in the work.
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