
Applying Social Network Analysis Techniques
to Architectural Smell Prediction

Dr Antonela Tommasel

There is still work to do!

Smell Prediction Proposal

• More features. Design metrics? OO metrics?
• Analyse other dependency-based problems!
• Can we predict the appearance of new nodes (e.g. new packages, classes)?
• Can we predict the disappearance of dependencies?

To what extent we can leverage on information from previous software versions
to predict likely configurations of dependencies in future versions

Early detection is important to plan ahead for actions to stop degradation

• We do not only need to fix local problems.
• Know which modules are likely to get coupled in the future.

Anticipate problems! Proactively look for solutions.

Predict when a dependency-related problem is likely to manifest!What do we want?

We argue that Social Network Analysis
techniques can be used for

software dependency prediction!

• Software systems and underlying architecture behave
as social networks.
• Changes can be predicted based on the appearance of
dependencies between design elements.

Dependency
Predictor

Ranking-based
prediction

Machine Learning
prediction

Time Series
forecasting

Architectural Smell
Predictor

Cycle
filter

Hub-like
filter

Unstable dep
filter

ranked list
of predicted

smells

predicted
dependencies𝑣𝑡−1

𝑣𝑡

Dependency-graph
Extraction

Topological
Features

Content-based
Features

Software
version 𝑣𝑡−1

Software
version 𝑣𝑡

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛,
where:

• Each node 𝑣 in 𝑉 is Java package, and each
edge e in E is a usage relationship between a pair
of packages 𝑣1 and 𝑣2.

• Edges represent similarity between packages
(topological or content-based).

• The prediction of a dependency is not enough to
predict the appearance of an architectural smell.
• Not every predicted dependency might cause

an smell to emerge.

• Predicted dependencies undergo a filtering
process.
• Filters are smell-dependent.

Tool Support

- Topological
Content
features
- Versions to
process

RSF

package
dependency

graph (s)
(+metrics)

- Smell filters
- Classifier & parameters
- Version for prediction

predicted
dependencies

evaluation
metrics

- Version for evaluation

smell
ranking

Extract Graph
Structures

Dependency
Prediction

Smell
Prediction

Evaluation

XML

XML

Lessons Learned

Machine Learning techniques have the potential for
Link Prediction applied to software dependencies

Example: Cycle Evolution

As software systems evolve, the amount and complexity of the interactions
amongst their components increases.

• More coupling.
• “Undesired” dependencies amongst certain components.
• Degradation of intended design  Architectural Smells appear!

Software Evolution & Dependencies

Software versions

Sy
st

em
 C

yc
le

s

• An initial evaluation with cycles & hubs showed a good
performance!
• High recall, low precision.

• Including content-based features improves dependency
prediction.

• Leveraging on information from previous versions
gives reasonable predictions, although not all versions
seem useful.

• The choice of the filter variant (for a given smell type)
can affect both recall and precision.
• We preferred good recall over precision
in the analysed cases.

Dependencies
predicted

based on…

current version
Link prediction

Homophily-based

previous and
current version

Machine Learning
approach

Classifier-based

history of
versions

Time series
Forecasting

Dynamic SNA

