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a b s t r a c t 

Large-scale text categorisation in social environments, characterised by the high dimensionality of feature 

spaces, is one of the most relevant problems in machine learning and data mining nowadays. Short-texts, 

which are posted at unprecedented rates, accentuate both the importance of learning tasks and the chal- 

lenges posed by such large feature space. A collection of social media short-texts does not only provide 

textual information but also topological information given by the relationships between posts and their 

authors. The linked nature of social data causes new complementary data dimensions to be added to 

the feature space, which, at the same time, becomes sparser. Additionally, in the context of social me- 

dia, posts usually arrive simultaneously in streams, which hinders the deployment of efficient traditional 

feature selection techniques that assume a feature space fully known in advance. Hence, efficient and 

scalable online feature selection becomes an important requirement in numerous large-scale social ap- 

plications. This work presents an online feature selection technique for high-dimensional data based on 

the integration of two information sources, social and content-based, for the real-time classification of 

short-text streams coming from social media. It focuses on discovering implicit relations amongst new 

posts, already known ones and their corresponding authors to identify groups of socially related posts. 

Then, each discovered group is represented by a set of non-redundant and relevant textual features. Fi- 

nally, such features are used to train different learning models for classifying newly arriving posts. Exten- 

sive experiments conducted on real-world short-texts demonstrate that the proposed approach helps to 

improve classification results when compared to state-of-the-art and traditional online feature selection 

techniques. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Large-scale text categorisation in social environments is one of

he most relevant problems in machine learning and data mining

owadays. With social media data growing at unprecedented rates,

his problem becomes a matter of paramount importance for nu-

erous real-world applications. For example, tweets could be clas-

ified aiming at discovering breaking news or events (such as nat-

ral disasters) helping to understand the impact of incidents, or

ssisting in emergency management and crisis coordination. Ad-

itionally, trending topics or social trends could be discovered by

nalysing clusters of related tweets. 

The pervasive use of social media offers research opportuni-

ies for analysing user behaviour and how they interact with their

riends. Unlike social connections formed by people in the physical
∗ Corresponding author. 
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orld, social media users are free to connect with a wider number

f people for a variety of reasons. The low cost of link formation

ight lead to networks with heterogeneous relationship origin or

trength. For example, in Twitter , a user might follow others be-

ause they publish interesting information, they have the same in-

erests, or even because they share some common friends, amongst

ther possible explanations. In addition to social information indi-

ating friendship or simply user interaction, there are other infor-

ation sources that might implicitly define connections between

sers in social media. For example, whether two users use the

ame terms, hashtags, or post about the same topic. Moreover, the

ocial media experience of users is no longer limited to a unique

ite, as users use social media for different purposes [49] . As a re-

ult, each social media site provides heterogeneous and comple-

entary information sources for describing a particular user, their

nterests and social relations. 

A task that can greatly benefit from the integration of multi-

le information sources is text categorisation. Such task is char-

cterised by the high dimensionality of their feature space where
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most terms have low frequencies. This situation is commonly

known as the curse of dimensionality, which refers to the increas-

ing computational complexity of learning problems as the volume

of data grows exponentially regarding the underlying space dimen-

sion. This problem worsens when considering short-texts, such as

tweets, Facebook posts or even blogs’ social annotations. Nonethe-

less, a collection of short-texts in social media does not only pro-

vide textual information but also topological information due to

the relationships between posts and users. In turn, the linked na-

ture of social media data causes new dimensions (such as friend-

ship relations between users) to be added to the feature space [34] .

The increasing amount of data does not only affect the computa-

tional complexity of algorithms, but also poses new challenges re-

garding how to represent and process new data, and how to effec-

tively leverage on such data for improving the performance of text

learning tasks [7] . 

Feature selection (FS) [3] is one of the most known and

commonly used techniques to diminish the impact of the high-

dimensional feature space by removing redundant and irrelevant

features. The standard FS setting assumes the existence of in-

stances, and therefore a feature space, fully known in advance.

Thus, FS consists in finding a small subset of the most relevant

features according to certain evaluation criterion. This setting is

known as batch FS. However, in real-world applications, and par-

ticularly social media ones, such assumptions might not hold as

either training examples could arrive sequentially, or it could be

difficult to collect the full training set [44] . For example, in the

context of social media data, posts usually arrive simultaneously in

streams, hindering the deployment of efficient and scalable batch

FS techniques. Thus, traditional batch FS techniques are not suited

for emerging big data applications. In these situations, online fea-

ture selection (OFS) in which instances and their corresponding

features arrive in a continuous stream, needs to be performed. This

process involves choosing a subset of features and the correspond-

ing learning model at different time frames. Thereby, OFS is partic-

ularly important in real-world systems in which traditional batch

FS techniques cannot be applied. 

Motivation 

Although FS techniques have received considerable attention

during the last decades, most studies focus on developing batch

techniques instead of facing the challenging problem of OFS. The

majority of FS techniques are designed for data containing uniform

features, which are typically assumed to be independent and iden-

tically distributed. However, this assumption might not hold in so-

cial media since measuring the relevance of features in isolation

possibly ignores dependencies amongst them given by the social

context. Interestingly, most algorithms only focus on content-based

information sources, even though social media content might be

topically diverse and noisy, which hinders the effective identifi-

cation of relevant and non-redundant features. It is worth not-

ing, linked data has become ubiquitous in social networks, as in

Twitter (in which not only tweets can be linked, but also their au-

thors might be socially related) or Facebook (in which users share

friendship relationships), providing additional information sources

such as correlations between instances. For example, posts from

the same user or two linked users are more likely to have similar

topics. As the different information sources provide complemen-

tary views of data, when assessing them independently, algorithms

may fail to account for important data characteristics. Instead, FS

techniques should be capable of combining multiples information

sources. In this context, the availability of link information enables

advanced research in FS techniques, which needs to address two

challenges: how to exploit relations amongst data instances, and

how to leverage those relations for FS. 
Efficient and scalable OFS is an important requirement for nu-

erous large-scale social applications. Despite presenting signif-

cant advantages in efficiency and scalability, existing OFS tech-

iques do not fully leverage on the multiple information sources

vailable. Instead, they mainly focus on textual information. Po-

entially, the performance of such approaches could be improved

y including additional information sources in social media data.

urthermore, most of the approaches that claim to be appli-

able in OFS, might fail when used in the context of social

edia data, due to the need of knowing either all data in-

tances or features in advance, making them unsuitable for data

treams. In consequence, novel approaches for efficiently select-

ng and updating the selected subset of features need to be

eveloped. 

Considering that different information sources in social me-

ia can provide multiple and possibly complementary views about

ata, this paper aims at addressing the OFS task for high-

imensional short-text data arriving in a stream. The hypothesis

ehind this work is that more accurate OFS techniques could be

eveloped by effectively integrating multiple information sources.

he main goal of this work is to define and evaluate a new intel-

igent technique for short-text mining to enhance the process of

nowledge discovery in social media. To that end, an OFS tech-

ique for leveraging on social information to complement com-

only used content-based information is presented. The technique

s based on the integration of social network structures into the

rocess of OFS [42] . 

Unlike other works found in the literature, the focus of the

resented technique is to analyse different types of social rela-

ionships between posts and their authors. Particularly, this work

ims at performing real-time classification of continuously gener-

ted short-texts in social networks by exploring the combination

f multiple relations amongst data instances in the social environ-

ent and how to leverage such multiple relations for enhancing FS

echniques. The goal is to discover implicit relations between new

osts and already known ones, based on a network comprising the

ndividual posts and the users who have written them. Then, the

ontent in the discovered groups of socially related posts is anal-

sed to select a set of non-redundant and relevant features to de-

cribe each group of related posts. Finally, such features are used

or training different learning models to categorise newly arriving

osts. 

ontributions 

The expected contributions of this work are described as fol-

ows. First, it tackles the problem of how to exploit social relations

mongst data instances by studying the linked nature of social me-

ia data. Second, it proposes a technique for leveraging on those

ocial relations. Third, it combines social information with the con-

ent of posts for effectively and efficiently performing FS. Fourth,

he technique is scalable, and thus appropriate for real-time en-

ironments in which neither features nor instances are known in

dvance. Furthermore, it allows the process of data instances as

hey are generated in a reasonable amount of time. Finally, the pre-

ented technique could help in the development of new and more

ffective models for personalising and recommending content in

ocial environments. 

The rest of this paper is organised as follows. Section 2 dis-

usses related research on OFS. Section 3 presents the proposed

FS technique combining two heterogeneous and complemen-

ary information sources: social and content-based information.

ection 4 describes the experimental settings and results obtained

or two social media datasets. Finally, Section 5 summarises the

onclusions drawn from this study, and presents future lines of

ork. 
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. Related work 

Most OFS approaches, such as [27,45,46] , assume that features

rrive sequentially and individually, whilst all training instances

re known in advance. Their goal is to build an appropriate learn-

ng model at each time frame given the full set of instances and

he features known up to that moment. One simple OFS approach

s to build the set of all discovered features that arrived in the con-

inuous stream and then apply any traditional FS technique [27] .

owever, given that the size of the feature space can continuously

ncrease, this approach might present scalability issues. For exam-

le, in online settings, FS approaches based on statistics would re-

ompute them each time a new feature is discovered, which might

e time-consuming, even if new features are individually analysed.

he problem worsens if the quality of features is assessed by learn-

ng algorithms. In an online setting, at each time-step, the fea-

ure set changes. In this context, evaluating the performance of the

odel considering each possible feature set would be inefficient

nd computationally complex. Particularly, in a real-world online

nvironment, there is usually a limited amount of computational

ime in-between the arrival of new instances and features, thus the

pdate time of the designed technique should not unlimitedly in-

rement as more features or instances arrive. Ultimately, an OFS

echnique must allow performing efficient incremental updates. 

Grafting and α-investing are traditionally used techniques for

tream FS. Grafting (a stage-wise gradient descent feature test-

ng) was proposed by Perkins and Theiler [27] for binary classifi-

ation problems. The grafting technique involves � 1 -regularisation,

n-regularised parameters and the definition of weight vectors for

ach potential feature. For each new feature and its associated

eight vector, a gradient test is performed. If no weight passes

he test, the feature is discarded. Conversely, if at least one weight

asses the test, the feature and its highest weight is added to

he model. After model updates, a re-optimisation step is applied

nd the tests are repeated. α-investing [50] is based on adaptively

odifying the threshold α for adding new features. The thresh-

ld defines the probability of including spurious features, and it is

djusted by defining the acceptable rate of irrelevant features to

elect. Every time new features are not added to the model, α is

ecreased to avoid selecting more than a pre-defined proportion of

purious features. Similarly, when new features are added to the

odel, α is increased. Note that, the addition of new features does

ot trigger an analysis of the already selected features. Hence, it

annot be guaranteed that features are not redundant. Although

his technique was reported to outperform Bag-of-Words (BOW)

epresentations combined with Support Vector Machines (SVM),

eural networks and decision trees, it needs prior knowledge of

he feature space to heuristically control the selection of features

46] . As such information might be difficult to extract from the fea-

ure stream, the technique might not be applicable in truly online

nvironments. Hence, more efforts would be needed to effectively

nalyse real-world streams in which the feature structure is un-

nown. 

Redundancy and relevance of stream features was analysed by

u et al. [46] in the context of a supervised two-step approach.

he first step analyses the relevance of the new feature. The sec-

nd step is only performed when relevant features are found, and

nalyses the redundancy of the newly selected features regarding

he already selected ones. The algorithm iterates through these two

teps until a stopping criterion is satisfied. Both feature relevance

nd redundancy are analysed in terms of probabilistic conditional

ndependence, which could be unreliable for small datasets. Aim-

ng at reducing the computational complexity of the approach, the

uthors presented a variation in which the redundancy analysis

f the set of selected features is only performed once the pro-

ess of generating features is stopped instead of in every itera-
ion. Although the described approaches were reported to achieve

romising results in traditional classification tasks (i.e. long-text

inary classification), their adaptation and performance for short-

ext classification has not yet been evaluated. Moreover, the pre-

ented approaches assume that the instance or feature set is fully

nown in advance, hindering their applicability in the context of

ocial media data in which streams of data are continuously ar-

iving, comprising already known or unknown features. Finally, as

eatures are assumed to be unique and to individually arrive, tech-

iques do not assess feature repetition. In social media settings,

eatures arrive in groups, which might include both known and

ew unknown features. In this context, already known features

ight be re-evaluated, affecting the computational time of tech-

iques. Contrasting with such approaches, this work considers a

equential arrival of instances, in which new features are analysed

s they arrive. This approach aims at mimicking the social environ-

ent in which new content that needs to be categorised is perma-

ently being generated. 

The previously presented approaches dynamically evaluate in-

ividual features as they arrive. Nonetheless, they neglect the re-

ationships between features, which might be of particular impor-

ance in certain environments. For example, in the context of so-

ial media, it might be useful to analyse both the content, and

he social relations or friendship network of authors, as a unit. In

his regard, Wang et al. [44 , 45] specifically designed approaches for

nalysing groups of features. 

A variation of the two-step technique in [46] , in which features

re assumed to arrive in groups, was presented by Wang et al.

45] . This variation is also divided in two steps. The first step ap-

lies spectral analysis to select the most discriminative features

f each new group by computing several matrix arithmetic oper-

tions, resulting computationally complex. The second step applies

 linear regression model to select a global optimal subset from

he newly selected discriminative features and the previously se-

ected ones. As traditional spectral FS techniques rely on global in-

ormation, which is not available for OFS, two criteria for selecting

ew features were defined. The first one selects features maximis-

ng the inter-class distances by analysing the differential discrimi-

ative power of the new feature regarding that of the already se-

ected ones. The second criterion analyses the discriminative power

f the individual features by performing a t-test. Features were se-

ected if they satisfied any criterion. Both steps are iteratively per-

ormed until a stopping criterion was met: a pre-defined number

f features are selected, there are no more features in the stream,

r the predictive accuracy of the selected set of features is higher

han a threshold. In real-time classification of continuously gener-

ted social short-texts, each newly arrived post could be regarded

s a new group of features. However, in such environments fea-

ures are repeated across posts. As the technique does not provide

ny mechanism for dealing with repeated features, features in so-

ial posts could be analysed several times. In addition, already se-

ected features could be re-evaluated, negatively affecting the per-

ormance of the technique. 

Replicating the setting of real-world applications, Wang et al.

44] considered a sequential arrival of instances. The authors used

parse online learning, and introduced a limit to the number of

eatures that the linear learner is allowed to access for each in-

tance. It is based on a greedy technique that randomly selects a

ubset of features only keeping those with non-zero values in the

esulting linear classifier. The authors claimed that their approach

utperformed state-of-the-art approaches such as the Minimum

edundancy Maximum Relevance Feature Selection [13] and the

orward Backward Splitting algorithm [14] for most of the eval-

ated datasets and tasks. However, as the approach was evaluated

or long texts in a binary-class setting, its findings might not be
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generalised to social environments, which often involve multi-class

classification of short-texts. 

Most OFS approaches for short-text categorisation rely only on

computing new features, such as aggregated statistics or N-grams,

instead of selecting a subset of the original features. For exam-

ple, Li et al. [20] proposed to detect real-world events by only

extracting non-overlapping segments of one or more consecutive

words contained in tweets, without further processing them. Tweet

segments appearing in a large number of tweets were supposed

to represent meaningful concepts or named entities, thus conven-

ing more specific information than individual uni-grams. Becker

et al. [6] aimed at differentiating between real-world events and

non-event messages in Twitter by defining features that considered

statistics of the expected volume of messages, user interactions,

topical coherence of tweet clusters and the usage of tags. 

Zubiaga et al. [51] proposed an approach for real-time tweet

classification into four categories: news, ongoing events, memes

and commemoratives by defining a small set of language-

independent features. Such features comprised aggregated statis-

tics of lexical elements commonly found in tweets (hashtags, URLs,

exclamation and questions marks), retweets and replies. Addition-

ally, the authors included as features the Shannon diversity index

of users, hashtag, language and vocabulary. This approach has four

characteristics that make it suitable for real-time tweet classifica-

tion: the required small feature set can be straightforwardly com-

puted, it does not make use external data sources, it can improve

the predictive power of content, it has a linear computational cost

to the number of tweets to be analysed, and the number of fea-

tures remains unchanged regardless the number of instances. How-

ever, as features were specifically designed for the four described

classes, they might not be applicable to other domains. 

Unlike the previously presented works, that only focus on one

type of features (e.g. textual or statistical features), there are a

few others that combine social information with textual features

[12,21] . Textual and structural information provided by the rela-

tionship between tweets and users were combined by Cot [12] for

classifying Twitter users according to their political opinion. Tweets

were pre-processed and a forest of randomised trees was applied

to select the most relevant content features. Structural informa-

tion was used to build a bipartite graph in which nodes repre-

sented users and edges represented the Dice similarity between

a user and each of his/her followees. Only edges with a similar-

ity higher than a threshold were included in the graph. Then, a

fuzzy community detection technique was applied. Once commu-

nities were found, the authors created a feature vector for each

user indicating his/her affinity towards the communities, as the

sum of the weights of the followees that belong to each commu-

nity. Finally, the authors presented three alternatives for combin-

ing the content and structural features. First, concatenating both

features into a single feature model. Second, feeding classifiers

the complete set of features, and then combining their classifi-

cation results. Third, using a meta-classifier for combining clas-

sifications based on each individual feature type. Results showed

that combining textual and content information allowed improving

classification results of the independent feature sets. The authors

concluded that extracting knowledge and generating good feature

models was harder for structural features than for content-based

ones. Moreover, they stated that combining both types of features

was not trivial, as the direct combination did not achieve the best

results. Unlike Cot [12] ’s technique, this work assumes a closer re-

lation between structural and content-based features, and uses the

information provided by the structural features to select the most

relevant content features. 

Finally, closely related to this work is the study carried out by

Li et al. [21] that proposed an unsupervised FS technique for so-

cial media. First, the social latent factors for each instance are ob-
ained based on the mixed membership stochastic blockmodel [2] .

hen, the importance of each feature is measured as its ability to

istinguish multiple social latent factors. The decision of whether

o accept a new feature is defined as an optimisation problem in-

olving the computation of several arithmetic operations between

igh-dimensional matrices. Each time a new feature arrives, a gra-

ient test is performed to decide whether the feature is accepted.

f the feature is accepted, the model is re-optimised, and there is

lso the possibility of removing already selected features. However,

his approach presents different shortcomings that might affect its

pplicability. First, it is designed to be applied on specific stream-

ng environments in which all data instances are required to be

nown in advance. Second, it assumes that link information is rel-

tively stable. Thus, social links between instances are never up-

ated to reflect changes in the social network. Third, its evalua-

ion was performed in a batch setting. Fourth, solving the optimi-

ation problem requires the computation of arithmetic operations

etween high-dimensional matrices. 

In summary, all the presented techniques suffer from differ-

nt shortcomings that might affect their applicability on real OFS

ettings [41] . First, they are intended to be applied on particular

treaming environments in which features arrive one at the time,

mplying that the full set of instances is known in advance. Sec-

nd, evaluations are mostly performed once all features are pro-

essed. Hence, performance is not assessed in real online environ-

ents. Third, techniques might not be scalable. Techniques that

nvolve solving optimisation problems requiring the computation

f arithmetic operations between matrices might not be applica-

le in online settings due to their high computational complexity

nd substantial memory consumption. In the same regard, tech-

iques requiring to load the full dataset on memory might not be

pplicable on high-dimensional domains. Fourth, the majority of

S techniques are designed to analyse individual features assum-

ng their independence. However, social media data does not fol-

ow that assumption, as data instances not only comprise groups of

eatures but also are inherently linked through social relationships,

hich can provide extra information beyond the feature-value. As

egards the techniques specifically proposed for the short-text do-

ain, two of them are of low computational complexity. Nonethe-

ess, features were specifically designed for the task to be per-

ormed, which might hinder their applicability on other domains.

oreover, those feature sets might not adequately adapt to the dy-

amically changing environment of social media data. 

To conclude, the main shortcomings of the existent OFS tech-

iques are related to whether considering features individually or

rouped, the effect of neglecting the linked nature of social me-

ia data, and scalability. Such shortcomings lead to an imperious

eed of developing novel FS techniques to cope not only with an

normous amount of data that is continuously generated in social

edia networks, but also with the performance and computational

omplexity requirements. 

. Social-aware OFS technique 

Efficient and scalable OFS becomes an important requirement

or numerous large-scale social applications. As discussed in the

revious Section, despite presenting significant advantages in ef-

ciency and scalability, the existing OFS techniques do not fully

everage on the multiple information sources available. Instead,

hey mainly focus on textual information. The hypothesis behind

his work is that more accurate OFS techniques could be developed

y integrating multiple information sources. Potentially, the perfor-

ance of such approaches could be improved if fully social media

ata. Furthermore, most of the techniques that claim to be appli-

able in OFS, might fail when used in the context of social media

ata, either due to the need of knowing all data instances or fea-
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Fig. 1. Overview of the presented feature selection technique. 

t  

M  

a  

n  

f

 

b  

a  

t  

f  

t  

i  

t  

s  

p  

i  

c  

y  

f  

f  

f

3

 

n  

n  

j  

o  

u  

r  

F  

v  

t  

s  

i  

c  

t  

b

 

e  

p  

w  

g  

c  

f  

d  

t  

t  

i  

g  

l  

p  

a  

s

3

 

s  

e  

p  

e  

c  

[  

b  

c  

[  

a  

b  

b  

F  

h  

t  

a  

“  

d  

n  

o  

u  

r  

c  

b  

i

 

i  

t  

N  

f  
ures in advance, which makes them unsuitable for data streams.

oreover, most techniques have a high computational complexity

nd lack of updates of the selected set of features. In consequence,

ovel approaches for efficiently selecting and updating a subset of

eatures need to be developed. 

This work presents an OFS technique for high-dimensional data

ased on both social and content-based information. The technique

ims at the real-time classification of social posts arriving in a con-

inuous stream, i.e. neither the features nor the data instances are

ully known in advance. Fig. 1 depicts the general methodology of

he presented technique. The focus of the technique ( Section 3.1 )

s to analyse the social relationships between posts and their au-

hors to detect groups of socially related posts. In this regard, a

ocial graph is created to define implicit relations between new

osts and already known ones based on a network comprising the

ndividual posts and the users who have written them. Then, the

ontent in the discovered groups of socially related posts is anal-

sed ( Section 3.2 ) to select the set of non-redundant and relevant

eatures describing each group of related posts. Finally, the selected

eatures are used for training different learning models for classi-

ying newly arriving posts ( Section 3.3 ). 

.1. Social analysis 

Social networks can be defined as a set of socially relevant

odes connected by one or more relations. Nodes can represent

ot only real people, but also diverse entities such as Web pages,

ournal articles, countries, neighbourhoods, or positions, amongst

thers [25] . The nature and nomenclature of connections amongst

sers might differ from site to site. For example, links could rep-

esent followee relations as in Twitter , or friendship relations as in

acebook . This work focuses on social networks composed by indi-

idual posts and the users who have written them. Although the

echnological features of the different social networking sites are

imilar, the cultures that emerge around them are diverse [9] . For

nstance, most sites encourage the maintenance of pre-existing so-

ial networks, whilst others help strangers to create new connec-

ions based on shared interests, which could result in connections

etween individuals that would not otherwise be made. 

Following the same data feed used in Fig. 1 to depict the gen-

ral methodology of the presented technique, Fig. 2 focuses on the

rocess that social data undergoes during the social analysis step,

hich covers the transformation of the original data feed into a

raph and the posterior community discovery. Considering the so-
ial and content-based relationships described, the original data

eed shown in Fig. 2 a is transformed into a social graph. In the

erived graph ( Fig. 2 b), each node represents a social post, and

he edges between them, the different types of relations between

he involved posts. In the example, an edge between two posts ex-

sts if a relationship existed between their authors, i.e. the example

raph only depicts the topological relationship of users. Nonethe-

ess, additional types of relationships could be defined, which are

resented in Section 3.1.1 . Once the graph is derived, it can be

nalysed to discover communities of related posts ( Fig. 2 c), as de-

cribed in Section 3.1.2 . 

.1.1. Modelling the social graph 

In the context of social media data, both the graph topological

tructure (i.e. social relations between users) and the vertex prop-

rties (i.e. posts characteristics) are important as they offer com-

lementary views of data. Several studies have analysed the differ-

nt types of relations that can be defined amongst users and their

orresponding posts [34] based on theories such as homophily

26] . As a result, besides the relations between posts that could

e derived from the social relations between their authors, there

ould be additional information sources available for each post

40] . The resemblance of content or posts categories (when avail-

ble) could be the source of new relations. Moreover, each micro-

logging site has specific characteristics and metadata that could

e exploited for establishing meaningful relations between posts.

or example, Twitter, Instagram and Facebook promote the usage of

ashtags, which represent a type of label or metadata to aid in

he search of a specific theme or content. Additionally, Facebook

llows to search for posts sharing specific activities, for example

’listening Aerosmith” or “’reading Oscar Wilde”. Fig. 3 exemplifies

ifferent types of relations that could be established between two

odes. Interestingly, social information and content-based relations

ffer com plementary views of the social posts. Hence, each individ-

al data view might not be sufficient for accurately describe the

elations between posts. For example, content-based information

ould be irrelevant or redundant, whilst social information might

e sparse or noisy. As a result, in order to accurately describe posts

t is important to combine both types of relations. 

The defined content-based relations could be used either to re-

nforce the social relations already found amongst posts or to es-

ablish new relations between posts that are not socially related.

ote that, in both cases the content information of nodes is trans-

erred to edges to characterise the specific relations between the
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Fig. 2. Social analysis step of the social-aware OFS technique. 
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Fig. 3. Examples of possible content-based relationships between social posts. 
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linked nodes. In the former case (referred as Weighted derivation),

the graph only includes edges representing the social relations be-

tween nodes, whose relevance is given by the content features. For

example, the content similarity between two posts could be used

for determining the strength of the existing social relation between

them. As a result, in this case, the quality of the social relations de-

pends on the adequate assessment of the content-based features,

which should allow to fully exploit the social media data informa-

tion. In the latter case (referred as Independent derivation), social

and content-based relations are assumed to be unrelated, i.e. edges

in the graph do not only represent social links, but also content

ones. 

For the purpose of this work, a social relation between two

posts (named Social ) was established in two cases. First, between

posts written by the same author. Second, between posts whose

authors are friends in the social network. Note that these social

relations, depending on the network under analysis might not be

symmetrical. In such cases, as most community detection algo-

rithms are based on the analysis of undirected graphs, a symmetri-

 

ation technique must be applied to accurately capture the seman-

ics of the asymmetric relationships conveyed by the edges of a

irected network. The adopted symmetrisation technique defined

he new adjacency matrix of the graph as U = A + A 

T , where A

epresents the adjacency matrix of the original graph. This strat-

gy is similar to ignoring edge directionality, except that in the

ase a pair of nodes is connected with edges in both directions,

he weight of the edge in the symmetrised graph will correspond

o the sum of the weight of both edges. 

In addition to the existing Social relation, several content-based

elationships between nodes can be computed as defined [40] .

ote that, all content-based relations are symmetric, i.e. they do

ot have directionality. Moreover, each relation might have an in-

ividual scale-factor representing the importance of such relation

n the final graph. Considering the information available on social

etworking sites, the content-based relations were defined as fol-

ows: 

• Similar Content. Measures the content resemblance of two

nodes. A minimum similarity threshold can be imposed to
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avoid creating a complete dense graph. Thus, only edges with

similarity above a certain threshold would be added to the

graph. Diverse text similarity metrics can be adopted to define

the nature and strength of the similarity. For example, similar-

ity could be expressed by simply computing the percentage of

shared terms between the two nodes or by computing the Co-

sine Similarity metric. 
• Shared Class . Two nodes are said to be related if they belong

to the same class. All edges have a weight of 1. In those cases

in which categories are organised in hierarchies or taxonomies

(as in the Open Directory Project 1 ), the weight of edges could be

computed as the distance between both categories. 

Once all relations between nodes are defined, they are in-

egrated into a unique social graph. Such unique graph col-

apses multiple (and possibly heterogeneous) relations between

wo nodes into a unique edge. The weight of such edge would be

qual to the sum of all edges’ weights. Then, the social graph is

nalysed in search of communities. 

.1.2. Discovering communities from the social graph 

Communities refer to potentially overlapping groups of nodes

hat have dense connections between the nodes within the com-

unity, but sparse connections with nodes belonging to other

ommunities. In this context, the goal of community detection

echniques (also known as graph clustering techniques) is to di-

ide the nodes into communities (or clusters), such that the nodes

f a particular community are similar or connected in some pre-

efined sense [32] . For example, in some cases it might be desir-

ble to obtain communities of similar order and/or density. Inter-

stingly, not all graphs present a structure of natural communities.

n the case of a uniform graph in which the edges are evenly dis-

ributed over the set of vertices, the resulting clustering will be

ather arbitrary. It is important to emphasise that due to the im-

ense scale and evolving nature of social media data, it is infeasi-

le to estimate the number of actual communities. 

Community detection has proven to be valuable in a diverse

et of domains [15] such as biology, social sciences and biblio-

etrics, amongst others. In the context of recommendation, iden-

ifying communities of costumers with similar interests in the

urchase network of customers and products of online retailers

ould improve the quality of product recommendations, thus bet-

er guiding customers in their shopping activities. As regards bi-

logy, Lusseau [22] analysed a network of bottlenose dolphins liv-

ng in New Zealand. Due to the natural separation of dolphins in

roups, with few vertices joining the different communities, such

etwork is often used to test the performance of algorithms. Ad-

itionally, community detection can be applied to protein interac-

ion networks to group proteins having similar functions and in-

eractions, which are fundamental for the inter-cell processes, and

ence improve the protein function prediction [19] . 

Although social graphs can comprise direct links, most tech-

iques found in literature disregard such directionality, failing to

ccurately capture the semantics of the asymmetric relationships

mplied by the edges of a directed network [24] . Regardless of the

dopted detection technique, the social structure of posts should

e updated when new posts are discovered. In other words, as data

rrives in a stream, the social graph has to be periodically updated

or coping with the continuous evolution of topics and the newly

iscovered posts, and thus be updated with the new data. 

In this work, one of the most efficient and traditionally-used

ommunity detection algorithms was used, the Louvain algorithm

8] . This algorithm implements a greedy method based on the lo-

al optimisation of modularity, and the aggregation of nodes of the
1 http://www.dmoz.org/ . 

H  

a  

s

ame community to build a new network whose nodes are such

ommunities. Although the output and execution time of the al-

orithm depend on the order of the analysed nodes, the authors

tated that it did not have a significant effect on the final network

odularity. After community structures have been discovered, the

ontent analysis step takes place. 

.2. Content analysis 

Once communities are discovered, they are individually anal-

sed to find the non-redundant and relevant features, i.e. the most

mportant features, describing such particular group of posts. Ac-

ording to [18] , features can be classified into three disjoint cat-

gories, i.e. strongly relevant, weakly relevant, and irrelevant fea-

ures. Strongly relevant features are always necessary for defin-

ng an optimal subset, i.e. they cannot be removed without los-

ng important information. An optimal subset of features should

nclude all strongly relevant features, none of the irrelevant fea-

ures, and a subset of weakly relevant features [48] . However, it is

nknown which of the weakly relevant features should be selected

nd which of them removed. In other words, a feature should be

elected if it is relevant but is not redundant to any other relevant

eature. Sections 3.2.1 and 3.2.2 describe the redundancy and rel-

vance analysis of features, respectively. Once the feature set per

ach community is found, communities are represented following

he traditional vector space model proposed by Salton et al. [31] ,

n which each vector dimension corresponds to an individual term

eighted by its frequency of appearance. 

Finally, the feature sets corresponding to each community are

sed for representing the posts in it, and then for training the

earning models that will be used for classifying the newly arriving

osts. A model is trained for each community using only the posts

hat belong to its associated community. Note that first, posts are

rouped into communities according to their social and content

imilarities, and then, the characteristics of each particular com-

unity are distinguished by means of these specialised learning

odels. Each model aims at accurately reflecting the particularities

f its training posts. The characteristics of posts belonging to other

ommunities are disregarded in order to avoid introducing noise to

he model, allowing an accurate classification of new posts. 

.2.1. Redundancy analysis 

The goal of the redundancy analysis is to find all possible re-

undancies and identify each of the redundant features to be re-

oved. Traditionally, the focus of FS techniques has been on the

dentification of relevant features, disregarding the explicit analysis

f feature redundancy. However, only assessing feature relevance

ight not identify redundant features, as they are likely to have

imilar rankings. As long as features are deemed relevant, they will

ll be selected, regardless their correlations. 

For removing redundant features, most techniques rely on

ubset evaluations, which implicitly handle feature redundancy

hrough feature relevance. Although they can achieve better results

han not handling feature redundancy at all, they might be ineffi-

ient when analysing high-dimensional data. 

The calculation of correlation between two random variables is

sually based on either linear correlations or information theory

23,47] . Analysing feature redundancy by means of feature correla-

ions have several benefits [47] . First, it helps to remove features

ith zero correlation. Second, it helps to effectively detect the re-

undancy between any pair of features. If data is linearly separa-

le in the original representation, it is still linearly separable if all

ut one of a group of linearly dependent features are removed.

owever, these techniques also have limitations as it cannot be

ssumed that in real-world environments features will be linearly

eparable. 

http://www.dmoz.org/
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For the purpose of this work, the feature redundancy analysis is

performed by computing the Pearson correlation. Features that are

highly and positively correlated with a certain percentage of fea-

tures are removed. Then, redundant features are mapped to their

most correlated feature, i.e. the feature with which they share the

highest correlation value. If redundant features were not mapped

to their non-redundant equivalent, there would be no available in-

formation for classifying those instances that only contain redun-

dant features that were found to be redundant. 

3.2.2. Relevance analysis 

Relevance techniques are based on assigning weights to the

individual features according to their degree of relevance. Then,

a subset of features is often selected from the top of a ranking

list, aiming at approximating the set of relevant features. How-

ever, these techniques are not capable of removing redundant fea-

tures as they are likely to have similar rankings. Thus, they will

be all selected regardless whether they are highly correlated with

each other. For high-dimensional data that might contain a large

number of redundant features, this situation might define subsets

of features far from the optimal [48] . As a result, the relevance

analysis should be performed after redundant features have been

removed, or at least replaced by their non-redundant equivalent.

For the purpose of this work, features inside each community are

ranked according to their TF-IDF score, and a pre-defined percent-

age of the highest ranked features is selected for representing such

community. 

3.3. Classification of newly arriving posts 

Fig. 4 depicts the processing of newly arriving posts, once the

social graph is derived and the textual representation of each com-

munity is obtained. Particularly, based on the Original Data Feed

and the community structures presented in Figs. 1 and 2, Fig. 4 ex-

emplifies the arrival and posterior processing of a new post, de-

noted as Post 7 (shown in Step 1 of the Figure). 

When a new post to be classified arrives, the community it be-

longs to is first determined. Such community defines the features

for representing the new post, as well as the trained classifier to

be used for prediction. As the community detection algorithm does

not allow to find the community of a post without affecting the ex-

isting community structure, vertex similarity strategies are applied

for finding the community the new post belongs to. Both the social

and content-based relations of the newly arriving post with the

other posts in the existing graph are established (shown in Step 2

in the Figure). The same node relationships that were used for de-

riving the social graph are now used to establish the relationships

between the new node and the existing communities. Note that, as

new posts are not yet assigned to any class, relationships includ-

ing an assessment of posts’ class are disregarded. To determine the

community a post should be assigned to, i.e. its most similar com-

munity, the built graph structure is used for computing the similar-

ity between a node and each community, as the average similarity

between the new node and each of the nodes in the community

(Step 3 in the Figure). 

Most vertex similarity approaches rely on structural and con-

nectivity characteristics. For example, the Sørensen similarity met-

ric (which measures the overlapping between the neighbourhoods

of posts, penalising them by the sizes of such neighbourhoods) or

the Pearson correlation [32] (which can be computed over the ad-

jacency matrix of the graph). Eqs. (1) and ( 2 ) show the defini-

tion of both similarity metrics, where p i and p j denote the post

for which the similarity score is computed, �( p i ) denotes the set

of neighbours of p i , | �( p i )| denotes the degree of post p i , A de-

notes the adjacency matrix, and n denotes the number of posts
ontained in the graph. In order to the similarity scores to be com-

arable, the Pearson correlation score was normalised to the range

0; 1]. 

 ørensen 

(
p i , p j 

)
= 

2 

∣∣�( p i ) ∩ �
(

p j 
)∣∣

| �( p i ) | + 

∣∣�(
p j 

)∣∣ (1)

P earsonCorrelation 

(
p i , p j 

)

= 

n 

(∑ n 
k =1 A p i ,p k ∗ A p j ,p j 

)
− | �( p i ) | ∗

∣∣�(
p j 

)∣∣
√ 

| �( p i ) | ∗
∣∣�(

p j 
)∣∣ ∗ ( n − | �( p i ) | ) ∗

(
n −

∣∣�(
p j 

)∣∣)
(2)

Preliminary studies over several similarity metrics showed the

erformance differences amongst the vertex similarity alternatives.

hey stated the impact of performing an adequate analysis of sim-

larity amongst posts, and thus selecting an adequate vertex simi-

arity alternative for maximising classification results. In all cases,

he best results were achieved for the harmonic mean of the two

resented metrics. Thus, experimental evaluation considers such

etric combination. In Fig. 4 , the reported values of similarity cor-

espond to the harmonic mean of the two presented metrics. The

omputed similarities determined that Post 7 should be assigned

o Community 2. 

Once the most similar communities and their corresponding

lassifiers are identified, three alternatives for assigning the post

o a category are defined. The first alternative ( Single) selects the

ost similar community, and assigns the post to the category with

he highest probability within this community. The second ( Aver-

ge ) and third ( Voting ) alternatives select the N most similar com-

unities and classify the post according to their corresponding

lassifiers. The alternatives differ in how the prediction of the dif-

erent classifiers are combined for assigning the post to a unique

ategory. The Average alternative averages the probabilities of a

ost belonging to each category, assigning the post to the category

ith the highest averaged probability. Finally, the Voting alterna-

ive selects the three categories with the highest probability per

lassifier and applies a voting scheme, assigning the post to the

ost voted category. In those cases in which two or more cate-

ories share the same number of votes, the post would be assigned

o the category with the highest probability. In the particular ex-

mple, once Post 7 is assigned to Community 2, its textual rep-

esentation is built and then the learning model corresponding to

ommunity 2 is used for classifying the new Post 7 into class A

Step 4 in the Figure). As noted, the Single alternative was applied,

.e. the new post was assigned to only one community. 

After new posts are classified, they are added to the social

raph to update the underlying community structure (shown as

tep 5). Thus, the feature space describing communities is periodi-

ally updated. Due to the computational complexity of the content

nalysis step, such updates could be trigger by each new post or

fter a minimum number of posts have been classified. This re-

triction tries to prevent a degradation of the technique’s perfor-

ance due to frequent updates. 

. Experimental evaluation 

This section presents the experimental evaluation performed to

ssess the effectiveness of the proposed technique. Section 4.1 de-

ails the implementation and experimental settings. Section 4.2 de-

cribes the data collection employed. Section 4.3 presents the base-

ines used for assessing the performance of the presented tech-

ique. Finally, Section 4.4 analyses the results achieved from the

erformed experimental evaluation. 
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Fig. 4. A schematic view of the arrival and classification of new posts. 
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.1. Experimental settings 

The Java programming language was chosen for implement-

ng the technique [33] . The social graph was derived based on

he social and content-based relations defined in Section 3.1 . A

inimum similarity of 0.6 was imposed in order to connect two

odes (named SimilarContent-0.6 ). Both the Independent (each re-

ation created an edge between two nodes) and the Weighted (the

ontent-based features were used for weighting the found social

elations) graph derivations were evaluated. Communities were

iscovered using the graph partition and community detection al-

orithms implemented in the Gephi Tookit 2 [5] , an open source li-

rary for exploring, filtering, navigating, manipulating and cluster-

ng networks. Posts were classified using the WEKA 

3 implementa-
2 http://gephi.github.io/ . 
3 http://www.cs.waikato.ac.nz/ml/weka/ . 

r  

t  

c  

c  
ion of the Sequential Minimal Optimisation [28] classifier, which

s an optimisation of the Support Vector Machines (SVM) classifier

11] . Although the experimental evaluation used the WEKA imple-

entation of the algorithm, it could be change to make the tech-

ique more computationally efficient in a real-world setting. More-

ver, the presented technique could be instantiated with other

earning algorithms. 

For all the evaluated cases, sets of different sizes of instances

ere randomly generated (ranging between 100 to 10 0 0 or 20 0 0

nstances, according to the dataset used). For each set, several

raining and test splits were analysed. In turn, for each given set,

ve training-test splits were created by gradually incrementing the

raining set from 10% to 60% of the total number of instances. For

ach combination of number of instances and training split, five

andom partitions into training and test set were generated, thus

he mean results are reported. Only the best results of the different

ombinations of training and test set splits are reported. Classifi-

ation performance was evaluated by means of accuracy, and the

http://gephi.github.io/
http://www.cs.waikato.ac.nz/ml/weka/
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Table 1 

Statistical characteristics of the data collections used in the evaluation. 

Twitter BlogCatalog 

Number of Instances 1,036 111,648 

Number of Features 226,043 60,411 

Number of Classes 4 319 

Number of Following Relations 251,522,840 3,348,554 

Average number of Followees 816 47 

Average number of Features per Instance 1084 7 

Average number of Instances per Class 259 376 
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standard precision and recall measures [4] summarised by the F-

Measure. 

The selection of redundancy and relevance thresholds was

guided by the characteristics of the dataset under analysis, and the

statistical distribution of features in the dataset. The selection of

the statistical metric to guide such selection is also important as

it depends on the type of distribution. Assuming the existence of

outliers in the dataset, average measures of data cannot be used

as they do not give any indication if the data dispersion. Instead,

statistics that are not based on the supposition of a symmetric

distribution of data, such as the interquartile range, are needed.

Regarding redundancy, an analysis showed that the redundancy

scores corresponding to pairs of features (considering a confidence

value of 0.01) were homogeneously distributed over the full range

of possible values, as the first and third quartiles corresponding to

the scores obtained for pairs of features were as similar to the me-

dian as the standard deviation was from the mean. In this context,

the chosen threshold corresponded to the value associated to the

median value, i.e. 0.6. This means that for a potential pair of fea-

tures to be deemed as redundant, its correlation score should be

higher to that of the 50% of the correlation distribution. The per-

centage of features to which a feature must be highly correlated in

order to be considered redundant was set to 60%. A similar anal-

ysis was performed for selecting the number of relevant features,

i.e. the relevance threshold. In this case, the statistical analysis was

based on the mode of the relevance score population and its re-

lation with the quartile distributions. The mode of the relevance

scores of features matched the score of the first quartile. This im-

plies that the first 25% of the features shared the same relevance

value, and hence do not contribute to the relevance analysis. Con-

sequently, the threshold for feature relevance was set to the 75%

of features, i.e. all features excepting the ones with scores equal

or lower to the mode were kept. As exposed, the selection of the

thresholds responded to the characteristics of the feature distribu-

tion in the datasets, and, then, they cannot be directly generalised

to different datasets. In case of analysing another dataset, the par-

ticular thresholds can be computed by the proposed methods. Note

that the statistical properties of the defined threshold could be fur-

ther explored aiming at optimising their selection. 

4.2. Data collections 

The performance of the approach was evaluated on two data

collections. The first collection comprised data extracted from Twit-

ter 4 [51] 5 , including the content of more than 50 0,0 0 0 tweets be-

longing to 1,036 trending topics, which were manually assigned to

one of 4 broad categories: news, ongoing events, memes (trend-

ing topics triggered by viral ideas) and commemoratives (the com-

memoration of a certain person or event that is being remem-

bered in a given day, for example birthdays or memorials). Tweets

were tokenised by means of the tool defined in [16] 6 , which was

specifically designed to process and tag social content. Then, stem-

ming was applied to the obtained tokens. The second collection

comprised data extracted from BlogCatalog 7 [43] 8 . BlogCatalog is a

blog directory in which users can register their blogs under pre-

defined categories. In addition, users are also encouraged to es-

tablish social relationships by following the activity of other users.

The data collection includes a summary of the content, categories

and tags of each blog, ownership information and non-reciprocal

social relationship between users. The selected BlogCatalog dataset
4 http://www.twitter.com/ . 
5 http://nlp.uned.es/ ∼damiano/datasets/TT-classification.html . 
6 http://www.ark.cs.cmu.edu/TweetNLP . 
7 http://www.blogcatalog.com/ . 
8 http://leitang.net/social _ dimension.html . 
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b  

J  
as used for evaluating the performance of feature selection tech-

iques [36–38] , community detection [39] , and learning collective

ehaviour [35] , amongst others. For the purpose of the experimen-

al evaluation, content-based features were defined as the tags as-

igned to each blog. Tags were pre-processed by removing stop-

ords and applying the Porter Stemmer algorithm [29] to the re-

aining words. Table 1 summarises the main characteristics of

oth datasets. 

.3. Baselines for comparison 

The proposed OFS technique was compared against three tra-

itional baselines. First, the classification based on a traditional

atch FS technique in which features are known in advance and

eighted according to their relative frequency (named Traditional-

atch ). Second, the classification applying the filter FS technique

nformation Gain (IG) retaining the 75% of the features (named

nfoGain-75 ). Third, the classification results achieved by an in-

remental classification algorithm such as IBL [1] , a variation of

he traditional k-NN in which features were weighted according to

heir relative frequency (named Updatable-KNN ). 

Additionally, our approach was compared to three state-of-the-

rt baselines: OFSs [17] , OGFS [45] and OFSp [44] . In all cases, the

pproaches were implemented in Java following the algorithms,

etails and parameters defined in the papers. OFSs and OFSp were

riginally conceived to be applied on a binary classification prob-

em. Hence, they were extended to support multi-class classifica-

ion by using the technique known as one-vs.-rest, in which a clas-

ifier is trained per class with the instances of that class as positive

nstances and all other instances as negatives. 

On the other hand, several considerations were introduced to

GFS. First, as the library for solving LASSO (Least Absolute Shrink-

ge and Selection Operator) used by the authors was only available

or C++ and Mathlab, a different Java implementation named “Sta-

istical Machine Intelligence & Learning Engine” (SmileMiner) 9 was

sed. Second, the authors exposed the concept of “groups of fea-

ures” that arrive together to the system. In the context of real-

ime classification of continuously generated short-texts in social

etworks, each newly arrived post can be regarded as a new group

f features that arrives to the system. For the purpose of the exper-

mental evaluation, each new post was considered as the group of

eatures to be analysed. Third, as different posts might comprise

verlapping sets of features, features might be analysed several

imes and also, already selected features could be analysed once

gain. In this regard, a modification was introduced to analyse each

eature only once. Fourth, as the authors proposed three stopping

riteria for the FS process but they did not specified which was

he one they experimented with, the FS process was stopped when

here were no more features to process, i.e. when were no more

osts available for training. The classification of new instances was

ased on the WEKA implementation of the C4.5 algorithm [30] , i.e

48, as it was one of the algorithms originally selected by the au-
9 https://github.com/haifengl/smile . 

http://www.twitter.com/
http://nlp.uned.es/~damiano/datasets/TT-classification.html
http://www.ark.cs.cmu.edu/TweetNLP
http://www.blogcatalog.com/
http://leitang.net/social_dimension.html
https://github.com/haifengl/smile
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hors for evaluating the approach. Finally, for the purpose of classi-

cation selected features were weighted according to their relative

requency. 

Results for the Twitter dataset were also compared to that of

6] (Becker et al.) and [51] (Zubiaga et al.). In the case of Zubiaga

t al., the evaluation considered both the features and the experi-

ental settings defined by the authors. In the case of Becker et al.,

ach trending topic was treated as a cluster from which all features

ere computed and then used to classify the trending topics. For

he experimental results based on the Twitter dataset to be compa-

able to those of the baselines, each trending topic was regarded as

 data instance, i.e. each instance comprised a tweet set associated

o such trending topic. Thus, the feature vectors of each instance

ncluded all terms appearing in such tweet set. 

Finally, two additional classification settings for further assess-

ng the importance of integrating both social and content features

or performing FS are proposed. First, a batch setting ( Batch ) in

hich the classifier of each community is only trained once, i.e.

lassifiers are never updated. For the purpose of the experimen-

al evaluation, the Batch strategy was only combined with the Sin-

le strategy, i.e. only the most similar community was considered.

econd, a setting in which a unique classifier ( Unique ) is trained

nd updated joining all the features belonging to each community

n a single feature space. As only one classifier is built, this strat-

gy does not need to find the most similar community for each

ewly arrived post, but exploits the formed communities that in-

ependently select their own non-redundant and relevant set of

eatures. 

.4. Experimental results 

This section presents the results of the experimental evaluation

erformed to assess the effectiveness of the presented OFS tech-

ique combining social and content-based information extracted

rom social media data. Section 4.4.1 presents the results obtained

or the Twitter dataset and Section 4.4.2 those obtained for the

logCatalog dataset. In both cases, the performance of the two pro-

osed derivations of the social graph are analysed. 

.4.1. Results for the Twitter dataset 

Fig. 5 shows the results for the Independent derivation of the

ocial graph applied to the Twitter dataset. As regards accuracy,

he best baseline scores were obtained by the Twitter -specific tech-

iques (Becker et al. and Zubiaga et al.). Interestingly, those alter-

atives relaying only on a traditional assessment of content-based

eatures obtained the worst results in all cases. Moreover, using IG

s a filter for selecting features in a batch scenario obtained worse

esults than using all features weighted according to their relative

requency. This further exposes the limitations of traditional batch

ontent-based feature selection approaches for performing short-

ext classification. Similarly, considering a more dynamic classifi-

ation setting in which features are updated when new posts ap-

ear (represented by Updatable-KNN) was not sufficient for achiev-

ng good performance. 

All baselines were outperformed by every of our OFS strategies,

tating the importance of leveraging not only on content-based

eatures, but also on social information. Note that, the best results

ere obtained when learning from a small number of instances. As

he number of posts increased, results did not further improve, but

nstead, they remained unchanged or even decreased. This situa-

ion reinforces the necessity of updating the community structure

y not only adding newly classified instances, but also removing

ld instances to adapt to new tendencies or topics emerging on

ocial media. This is further evidenced by the results of the Batch

trategy, which outperformed the results only based on content,
ut achieved worse results than other alternatives including up-

ates of the social structures. 

F-Measure results were alike. The highest improvements of our

FS strategies were obtained when analysing and classifying low

umbers of posts. Note that in such case, both Average and Unique

ere able to obtain perfect precision and recall, demonstrating the

enefits of combining social and content-based information. In-

erestingly, for this evaluation metric, the results of the Twitter -

pecific baselines were similar to those of the Traditional-batch and

nfoGain-0.75 and even lower than those of OGFS when analysing

ore than 10 0 0 posts. These results imply that even when the

aselines seemed to be accurate, they were not able to perform

redictions with high precision. 

Results obtained for the Weighted derivation of the social graph

re depicted in Fig. 6 , which are higher than all of the baselines.

his graph derivation obtained similar results than the Indepen-

ent one, excepting for low numbers of instances. In that case, the

ndependent derivation outperformed the Weighted one. The high-

st differences were obtained for the Unique and Voting strate-

ies, which obtained the best results for the Independent deriva-

ion. These results highlight the importance of adequately lever-

ging the information extracted from the social networking site

n order to improve the quality of classifications. The Average and

nique strategies results continue to demonstrate the importance

f accurately determining social and content-based relations be-

ween posts, and thus, finding the most similar social matches to

ew ones. The differences between Average and Voting emphasise

he importance that finding the most similar community has on

he subsequent classification of new instances. Regarding our OFS

trategies, the worst results were obtained with Single . These re-

ults might have different explanations. First, instances might be-

ong to more than one community, i.e. communities might over-

ap, meaning that an individual community might not be suffi-

ient for accurately describing the content of new instances. Sec-

nd, when including multiple communities in the analysis, it is im-

ortant to choose how to combine their results to maximise clas-

ification performance. Finally, as the results of the Batch strategy

ere lower to those of Average and Unique , they demonstrate the

mportance of not only including social information in the selec-

ion of textual features, but also of adapting the set of selected

eatures according to the continuous appearance of new topics and

osts in the social media stream. 

.4.2. Results for the BlogCatalog dataset 

Fig. 7 shows the results for the Independent derivation of the

ocial graph when applied to the BlogCatalog dataset. As regards

ccuracy, the best baseline results were obtained by OFSp. In spite

f knowing all the feature space in advance, traditional baselines

ere outperformed by our OFS strategies. Interestingly, those alter-

atives relaying only on a traditional assessment of content-based

eatures obtained the worst results in all cases. When analysing

ew instances, selecting features with InfoGain-75 obtained worse

esults that including all features. Similarly to the Twitter dataset,

pdatable-KNN obtained worse results than the traditional base-

ines. These results show the shortcomings of classifying social

osts solely based on their content, and the importance of also in-

luding social information. In all cases, our approach achieved bet-

er results that the state-of-the-art baselines. 

Unlike the results obtained for the Twitter dataset, as the num-

er of analysed instances increased, the accuracy results of our OFS

trategies improved, whilst those of the baselines decreased. These

esults further emphasise the importance of including social in-

ormation for accurately selecting features. Nonetheless, they also

mplied that the rate of new topic generation is not as fast as in

witter , as even when old topics are not removed, results continue

o improve. Similarly to the results for the Twitter dataset, of the
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Fig. 5. Results of classification using the Independent graph derivation for the Twitter dataset. 
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presented OFS strategies, the best results were obtained with Av-

erage , closely followed by the other strategies. However, the differ-

ences amongst the other alternatives are smaller than the differ-

ences found in the Twitter dataset. This could imply that joining

multiple communities in the class assessment of instances does

not enrich the representation of such instances. Moreover, as the

number of instances increased, the differences in accuracy tended

to decreased. 

F-Measure results did not follow the same tendencies as ac-

curacy, adopting a similar distribution than those for the Twit-

ter dataset. Even though all baselines were outperformed by our

strategies regardless the number of posts, the highest improve-

ments were obtained for low numbers of posts. In this case, the

best baselines results were obtained for OFSs, followed by OFSp.

Note that the best performing baselines differ from those found for

the Twitter dataset, highlighting the intrinsic differences amongst

the datasets. For this metric, it is possible to observe a perfor-

mance difference between the presented OFS strategies. In this

case, Average obtained the best results, followed by Unique and Sin-

gle . These results imply that even when the techniques seemed to

be accurate, they were not able to perform high precision predic-
ions. Furthermore, they validate the importance of social informa-

ion for obtaining high quality results. The decrement in F-Measure

esults could indicate (as for the Twitter dataset) the necessity of

ot only frequently updating the community structure and the sets

f relevant features, but also performing a selection of the posts to

nclude in the community analysis. 

Results obtained for the Weighted derivation of the social graph

re depicted in Fig. 8 . This graph derivation obtained similar ac-

uracy results than the Independent one. As regards F-Measure, re-

ults were higher than for the Independent derivation, and accen-

uate even more the superiority of Average . Such differences con-

inue to state the importance of adequately leveraging the informa-

ion extracted from the social networking site to improve the qual-

ty and precision of classifications. From these differences, it could

e inferred that treating social and content relations independently

dds noise to the processing, resulting in lower classification per-

ormance. Hence, it could be stated that, even though content rela-

ions add useful community information, for this dataset, the social

omponent is more relevant for determining the community struc-

ure of posts. 
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Fig. 6. Results of classification using the Weighted graph derivation for the Twitter dataset. 
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The differences between Average and Voting remark the impor-

ance that finding the most similar community has on the subse-

uent classification of new instances, strengthening the importance

f choosing how to combine the results of such communities for

aximising classification performance. As for the previous dataset,

he worst results were obtained for Batch , showing that it is not

ufficient to consider social information for performing feature se-

ection, but it is also necessary to adapt the set of selected fea-

ures according to changes in the discovered instances. Finally, the

act that Single obtained worst results than Average might indicate

hat posts could belong to overlapping communities, meaning that

n individual community is not sufficient for accurately describing

he content of new instances. 

.4.3. Summary of results 

Table 2 summarises the F-Measure improvements of the best

trategies of our OFS technique for the Independent social graph

erivation, i.e. Unique, Average , and Voting or Single (depend-

ng on the analysed dataset), over the best traditional baseline

 Traditional-Batch ) and the best state-of-the-art baseline (OGFS or

FSs for the Twitter and BlogCatalog datasets, respectively). Note

hat the best performing state-of-the-art baseline varies accord-

ng to the dataset under analysis. Additionally, in the case of the
witter dataset, the improvements over the best Twitter -specific

aseline (Zubiaga et al.) are reported. For every number of eval-

ated posts and both datasets, the best strategies outperformed

lmost every baseline results. This shows the relevance and su-

eriority of the presented OFS technique over both traditional

echniques based solely on content, and state-of-the-art OFS tech-

iques. For the Twitter dataset, baselines results were improved up

o a 143%. Interestingly, the highest improvements for the Twitter

ataset were obtained regarding the OFS techniques. In the case

f the BlogCatalog dataset, baselines results were improved up to a

3,531,145.13 % regarding traditional baselines and 695% regarding

he best state-of-the-art baseline. These results reinforce the suit-

bility of our OFS technique in the context of social media data. 

When comparing the results obtained for the two graph deriva-

ions of the social graph, it can be observed that they varied ac-

ording to the chosen derivation. For the Twitter dataset, in over-

ll, the Independent derivation obtained slightly higher results than

he Weighted one. On the contrary, for the BlogCatalog dataset, the

eighted derivation allowed to obtain the highest results. As ex-

osed in [40] , the intrinsic characteristics of the network under

nalysis influence the quality of communities achieved for the di-

erse combinations of relations and graph derivation. Hence, the

esults differences might account for the intrinsic characteristics
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Fig. 7. Results of classification using the Independent graph derivation for the BlogCatalog dataset. 

Table 2 

Summary of F-Measure improvements over traditional and state-of-the-art baselines (%). 

(a) Improvements for the Twitter dataset 

100 posts 200 posts 500 posts 10 0 0 posts 

Trad. OGFS Zub Trad. OGFS Zub Trad. OGFS Zub Trad. OGFS Zub. 

Unique 109.09 119.41 119.15 34.14 52.74 41.04 76.04 74.39 69.30 70.19 56.26 70.40 

Average 109.09 119.41 119.15 112.39 141.83 123.31 125.69 123.58 117.05 133.41 114.30 133.69 

Voting 67.27 75.53 75.32 25.60 43.01 32.06 26.79 25.60 21.94 26.81 16.43 26.96 

(b) Improvements for the BlogCatalog dataset 

100 posts 200 posts 500 posts 10 0 0 posts 20 0 0 posts 

Trad. OFSs Trad. OFSs Trad. OFSs Trad. OFSs Trad. OFSs 

Unique 86739.03 33.33 266954.77 140.00 1586839.15 157.75 6281951.28 695.34 23531145.13 923.09 

Average 507.87 133.33 267.20 230.00 101.01 40.04 82.62 65.21 133.31 131.02 

Single 160.52 0.00 167.05 140.00 150.00 165.33 301.76 263.47 253.02 249.55 
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of Twitter and BlogCatalog , which affect the community detection

process, and the posterior processing of new posts. For example,

in information oriented networks as Twitter is, it is expected that

content-based relations would be more important than social ones,

implying that independently assessing both types of relations (i.e.

the Independent graph derivation) would allow to achieve higher

community quality than weighting the social relation with the
ontent ones (i.e. the Weighted graph derivation). Conversely, Blog-

atalog’s goal is to foster the connection amongst bloggers high-

ighting the social aspect instead of simple being a blog directory.

s a result, it is expected that the Social relation would be more

elevant whilst content-based relations might introduce noise, thus

avouring the Weighted relation. In summary, these differences ac-

entuate not only the importance of adequately leveraging on the
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Fig. 8. Results of classification using the Weighted graph derivation for the BlogCatalog dataset. 
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nformation extracted from the social networking site, but also on

heir intrinsic characteristics to optimise the quality of communi-

ies, and thereby improve the overall OFS performance. 

A statistical analysis based on [10] was performed to determine

hether the differences amongst results were significant. As data

as shown not to be normal, the Friedman test for related samples

as applied to the results obtained for each baselines and our OFS

echnique. Particularly, the results obtained for each of the gener-

ted training-test set splits of the defined random partitions was

egarded as a sample. To perform the test, two hypotheses were

efined: the null and the alternative hypothesis. The null hypothe-

is stated that no difference existed amongst the results of the dif-

erent samples, i.e. all the evaluated FS techniques performed sim-

larly. On the contrary, the alternative hypothesis stated that the

ifferences amongst the FS techniques were significant and non-

ncidental. The statistical test showed that (with a confidence of

.01) the differences amongst results were statistically significant

in all presented cases the obtained value was higher than the cor-

esponding critical value). Then, to specifically test whether the

ifferences amongst the results obtained for our OFS technique and

he selected baselines were statistically significant, the Wilcoxon

est was applied. The same hypotheses were defined. The statisti-

al test showed that for the alternatives summarised in Table 2 , the
ull hypothesis could be rejected with a confidence of 0.01, mean-

ng that the results differences were significant and not due to

hance. Moreover, the test showed that the results of the presented

FS technique in all cases were statistically higher than those of

he evaluated baselines and the state-of-the-art techniques. As re-

ards the remaining results, in most cases the statistical superior-

ty of the presented OFS technique was maintained. The exception

as found for the Voting alternative in the Weighted derivation and

he F-Measure evaluation metric. 

In summary, our technique can be applied in real-world prob-

ems in which batch FS approaches might not be suited, achieving

ven better performance than state-of-the-art techniques specif-

cally design for social media. Moreover, purely content-based

trategies might not be sufficient for classifying social media texts,

ue to the limited number of available features, confirming the im-

ortance of the social relations between users. Thus, leveraging on

ocial information becomes crucial to OFS techniques. It is worth

oting that the intrinsic characteristics of both datasets showed

o have an effect on the presented technique as the proposed so-

ial graph derivation alternatives obtained diverse results for both

atasets. Finally, the performed statistical analysis strengthened

he superiority of the presented OFS technique over the analysed

aselines and state-of-the-art techniques. 
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5. Conclusions 

Feature selection is one of the most known and commonly used

techniques for diminishing the impact of the high-dimensional fea-

ture space, which is reduced by removing redundant and irrele-

vant features. The standard FS setting assumes the existence of a

fixed set of instances, and therefore a feature space fully known

in advance. In real-world applications, such assumptions might not

hold as either training examples could arrive sequentially, features

might appear incrementally or it could be difficult to collect a full

training set [44] . In these situations, OFS techniques which con-

sider the arrival of instances and their corresponding features in a

continuous stream should be used. OFS techniques involve choos-

ing a subset of features and its corresponding learning model at

different time frames. However, the challenges posed by OFS re-

main open as most studies in the literature are focused on devel-

oping batch techniques instead of online ones. As a result, in order

to mine big data in real-world applications, new online techniques

for efficiently identifying a number of relevant features and then

build accurate predictions models have to be developed [17] . 

This work aimed at assessing both social and content-related

factors for real-time classification of continuously generated short-

texts in social networks. The proposed technique tackled the chal-

lenging problem of OFS, which is an important requirement in

numerous large-scale social applications. Although the presented

technique is applied to multi-class classification of socially gener-

ated posts, it can be also used in both binary and multi-class set-

tings, and even for other learning tasks, such as clustering. 

Experimental evaluation conducted on real-world social media

datasets demonstrate that the proposed technique helps to im-

prove classification results when compared to traditional and state-

of-the-art FS techniques in both batch and online settings, ex-

posing the limitations of pure content-based techniques for social

text classification. The obtained results evidence the importance of

the social relations amongst users for classifying short-texts in so-

cial media, and its advantages for selecting the most relevant set

of features. Although the preliminary implementation significantly

improved precision results of state-of-the-art techniques found in

literature, for one dataset, precision results are still lower than

those achieved for traditional tasks of text classification. This situa-

tion highlights the difficulty of the task and the need of continuing

to develop, improve and evaluate new techniques. 

As regards future work, an extensive experimental evaluation

of all the parameters involved in the OFS technique must be per-

formed. Moreover, the performance of other methods for determin-

ing the redundancy and relevance of features should be analysed.

For example, mutual information could be used for simultaneously

selecting non-redundant and relevant features. Additionally, new

graph representations for further exploiting the topology structure

of social relations and communities could be defined. For example,

the chosen graph representation collapses possibly heterogeneous

information into a unique and homogeneous space, ignoring the

possible differences amongst such relations. Hence, a multi-graph

representation in which each relation is represented as a separated

dimension could be devised, which would also allow to optimise

the community partition at each dimension individually. Regarding

community detection, the possibility of analysing overlapping com-

munities will be explored. Finally, other applications to the tech-

nique will be analysed. For example, the technique could be in-

serted in the context of a followee recommendation system, under

the hypothesis that information regarding the existence of commu-

nities of users can help to improve followee prediction quality. 
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