

Following the Trail of Fake News Spreaders in Social Media A Deep Learning Model

Fake or unreliable content can pose significant threats to **democracies**, **public** health and economy.

- Can affect how people perceive content.
 - Alter the likelihood of accepting fake content as truth.
 - The line between what is fake or not becomes more uncertain.

The trustworthiness of the entire news ecosystem might be at risk.

Users play a fundamental role as creators and disseminators of fake content.

Detecting spreaders will provide valuable **information** for the design of **mitigation** or intervention strategies to rapidly contain the spreading.

We presented a model for identifying fake news spreaders in social media by combining content and user features, the induced propagation trees, and features learned from user interactions.

A preliminary evaluation showed the models' potential for accurately detecting fake news spreaders and the importance of combining the different aspects of user representation for effectively characterize spreaders.

Antonela Tommasel, Juan Manuel Rodriguez, Filippo Menczer

- User representation is divided into **three** components.
- Features. Vector concatenating **personality** traits, readability scores, sentiment and emotions, ...
- Social interactions. **Three concatenated GCNs** allow including interactions from up to **3-hop neighbours** (user community).
- Tweets. Each tweet is represented by a propagation tree derived from the triggered replies and the pooled BERT embeddings of the involved tweets.

INDIANA UNIVERSITY BLOOMINGTON

	Traditional	State-of-the-art
Avg. precision Improvements	43%	54%
Avg. recall improvements	61%	184%
Avg. AUC-ROC improvements	51%	42%

- Best baselines results were obtained with simple user/tweet features.
- High precision, but low recall.
- Network topology and hand-crafted features seemed to be more useful than **content**.
- Our model achieved the **highest** results.
- Better balance between precision and recall than the evaluated baselines.
- Some baselines achieved similar precision, but lower recall.

There is still work to do!

- Evaluate with other data collections varying scale and domain.
- Explore user relation representations.
- Explore the temporal relation of tweets.
- Perform an ablation study.

