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ABSTRACT
Recommender systems are central to online information consump-
tion and user-decision processes, as they help users find relevant
information and establish new social relationships. However, recom-
menders could also (unintendedly) help propagate misinformation
and increase the social influence of the spreading it. In this con-
text, we study the impact of friend recommender systems on the
social influence of misinformation spreaders on Twitter. To this
end, we applied several user recommenders to a COVID-19 misin-
formation data collection. Then, we explore what-if scenarios to
simulate changes in user misinformation spreading behaviour as an
effect of the interactions in the recommended network. Our study
shows that recommenders can indeed affect how misinformation
spreaders interact with other users and influence them.

CCS CONCEPTS
• Information systems → Social networking sites; Recom-
mender systems; • Computing methodologies → Simulation
evaluation.
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1 INTRODUCTION
In the last few years, social media (as well as other online plat-
forms) has seen an increment in the spreading of fake news, ru-
mours, hoaxes, and other forms of misinformation, as well as the
proliferation of hate speech, incitement to violence, harassment and
other forms of abusive behaviours [18]. This situation has become
a critical problem with negative real-world consequences, ranging
from weakening democratic systems to public health issues [25].
For example, the COVID-19 pandemic caused an increased need for
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trustworthy information in response to the highly emotional and
uncertain situation. This led to misinformation linked to health rec-
ommendations [27], which could reduce the credibility of scientific
evidence and affect compliance to evidence-based policy interven-
tions, with long-term and potentially deadly consequences [12].

As mediators of online information consumption, recommenders
are affected by the proliferation of low-quality and undesired con-
tent, serving as an unintended means for their spread and massive
amplification while reducing the quality of predictions. Recently,
recommenders have undergone criticism for inducing the creation
of filter bubbles, echo chambers, and facilitating opinion manip-
ulation [7]. Similarly, users’ vulnerability to dis/misinformation
can be fostered by data, algorithms, and interaction biases, which
limit users’ openness to contrasting points of view. While studies
regarding how recommenders select the information users are ex-
posed to are common, the studies of how recommenders influence
misinformation spreading are limited.

In this work, we contribute to the study of whether recommender
systems make social media more susceptible to misinformation spread-
ers by amplifying their influence. To this end, we simulate changes
in user misinformation spreading behaviour as an effect of the inter-
actions with their network. First, we apply different recommenders
to define what-if scenarios of how the structure of social interac-
tions would evolve based on the obtained recommendations. Then,
we simulate a discrete opinion dynamic model over the derived net-
works to assess how recommendations would affect misinformation
spreaders’ influence. To support our proposal, we conducted a sim-
ulation over a COVID-19 misinformation Twitter data collection.
Our study shows that recommenders had a differentiated impact on
misinformation spreader influence, leading to networks of different
propagation characteristics. Particularly, the analyses showed that
it is not enough that recommendations include many spreaders, but
they also need to be well connected to affect spreading.
2 RELATEDWORKS
The initial step for mitigating misinformation is understanding how
it propagates [1]. However, despite the increasing attention to mis-
information detection, the study of how social media contributes
to opinion formation has received comparatively less attention [4].
Closely related to this study are works analyzing the effect of rec-
ommenders on several phenomena [4, 6, 8, 22]. Fernández et al.
[8] studied the impact of news recommenders on misinformation
spread. Spread was statically measured based on the recommended
items. Results showed that recommenders suffering from popularity
bias were more likely to recommend misinformation.

Several studies focused on the impact of friend recommenders [4,
6, 22]. Fabbri et al. [6] studied the impact on user exposure, which
might influence attention dynamics and reinforce the inequalities
affecting certain groups (e.g., gender). Results showed that minority
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and homophilic groups could get a disproportionate advantage in
exposure, while non-homophilic groups get underexposed. Adapted
to our study, this could imply that if misinformation spreaders orig-
inally belong to a tight group, they might get over-recommended.
Finally, exposure did not seem to be significantly affected by how
users decided which recommendations to accept. Instead, it was
affected by the initial network configuration and the recommender.
This might have negative consequences as user actions are not
considered relevant for network evolution.

Santos et al. [22] and Cinus et al. [4] assessed the effect of friend
recommenders in echo chamber evolution. Cinus et al. [4] combined
traditional topological and opinion-guided recommenders with
two opinion models. Results showed that recommenders could
contribute to echo chambers in the presence of more homophilic
than non-homophilic links. In addition, the impact of recommenders
was negligible if the initial network was already segregated in
polarized communities. Finally, Santos et al. [22] evaluated the
effect of topological recommenders over synthetic networks. During
simulation, opinionswere updated based on the average influence of
neighbours. Results showed an increment of opinion polarization,
measured as the opinions’ standard deviation at the end of the
simulation. Unlike Fabbri et al. [6], network density was controlled
by removing one edge for each newly added one.
3 TASK AND METHODS
To assess the effect of recommenders over misinformation spread-
ers’ influence, we defined a 4-step pipeline (Figure 1).
3.1 Data collection

Evaluation was based on FibVid [17]1, a COVID-related misin-
formation dataset comprising news claims appearing in Politifact
and Snopes. From each claim, the authors extracted keywords that
were searched on Twitter to retrieve the associated content. Tweets
were labelled according to the matching Politifact or Snopes label
of the associated news claim. The collection comprised 772 COVID-
related claims associated with 112, 433 tweets shared during 2020,
and 24, 340 users. We retrieved all tweets using the Faking it! tool2.

Based on the Politifact and Snopes labels of the associated news
claims, 26% and 74% of tweets were labeled as authentic and fake
content, respectively. Then, we used these labels to determine
whether users were misinformation spreaders. For each user, we
computed the proportion of shared tweets deemed fake, and if
it was higher than a certain threshold, we considered the user a
misinformation spreader. We adopted a conservative definition of
spreaders, setting the threshold to 0.5.
3.2 Network definition

Given the dynamic content-based nature of social interactions,
instead of focusing on the topological follower/followee graph, we
focused on the conversational interaction network. We built a user
graph in which nodes represent users, and edges represent reply,
mention, quote, or retweet actions. Edges are directed to represent
the flow of conversation. In the case of replies, there is an edge from
user 𝐴 to user 𝐵 if 𝐴 replied to 𝐵. For mentions, there is an edge
from 𝐴 to 𝐵 if 𝐴 mentioned 𝐵. For quotes, there is an edge from 𝐴

to 𝐵 if 𝐴 quoted 𝐵. For retweets, there is an edge from 𝐴 to 𝐵 if 𝐵

1The collection is originally available at https://doi.org/10.5281/zenodo.4441377
2The tool is publicly available at: https://github.com/knife982000/FakingIt

retweeted 𝐴. To ensure that the user graph is not disconnected, we
kept users (and their tweets) in the largest connected component
that had shared more than one tweet. Then, from the original user
set, we kept 20, 154 users. On average, each user shared 4.9 (±17.25)
tweets and interacted 4.4 (±17.4) user relations3.

The network was temporally split into training and test. User
interactions were sorted according to their date; the first 70% were
used for the training set, while the remaining 30% were used as test
set. Based on the defined threshold, in the training network, 41% of
users were deemed as spreaders, 49% non-spreaders, and the remain-
ing 10% were neutral (i.e., their score was equal to the threshold).
When considering the entire network, the spreader/non-spreader
distribution changed. As users shared more tweets, the proportion
of users that could be considered spreaders increased (i.e., the ten-
dency of users to share misinformation increased), reaching 80% of
spreaders, 10% of non-spreaders, and 10% of neutral users. Only 2%
reverted their misinformation spreading behaviour.

The original network topology and homophily (i.e., the tendency
of users to interact with other similar users) can affect the final
characteristics of the network and condition the effect of recom-
menders [6]. Then, following Garimella et al. [9] and Cota et al.
[5], we quantified the polarization of the selected users relying on
the relation between users’ score and the score of the users with
whom they interacted to determine the homophily levels of each
group. Positive Pearson correlations were found for non-spreaders.
Spreaders show a negligible negative correlation. Correlations for
non-spreaders were higher with replied than mentioned users. On
average, 27% of spreaders’ interactions were with other spreaders,
with 17% of interactions with users with higher or equal scores.
Conversely, non-spreaders interacted with users on a broader range
of scores, accounting for only 16% of interactions with spreaders.
This shows that both spreaders and non-spreaders tended to inter-
act more with non-spreaders, with non-spreaders showing a higher
homophilic behaviour than spreaders.
3.3 Making recommendations

Several recommenders were considered for recommending links
in the defined conversational interaction network. First, two triv-
ial and non-personalized baselines: i) popularity (i.e., users were
recommended based on their degree), and ii) random, as a lower
bound reference. Second, three traditional user recommenders: i)
Topological is based on Resource Allocation [20]. ii) Content is
based on the cosine similarity of the centroid of the Word2Vec vec-
tors of users’ shared tweets. iii) Friend-of-Friends (FoF) is based
on the triadic closure principle by which friends of friends also tend
to become friends [13]. Then, users at a 2-hop distance were recom-
mended according to their popularity. Finally, Implicit MF [15], a
top-performing matrix factorization technique tailored for implicit
feedback settings. All recommendations were performed over the
same temporal data partitions. A cut-off threshold was defined to
recommend the top-𝑘 users, with 𝑘 = 10. Recommendations were
deemed correct if they appeared in the test set.
Evaluation metrics. While the performance of recommenders is
not the main focus of this study, unlike other works in the liter-
ature [4, 6, 8, 22], we consider it an important aspect to analyze.

3The final retrieved set of tweet IDs and their metadata are available at: https://github.
com/tommantonela/recsys2022-spreader-recommendation
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Figure 1: Phases of the proposed pipeline
This does not aim to endorse recommendations but check whether
they would be close to the actual user interactions. If recommenda-
tions do not follow (even loosely) them, then the resulting network
structure might not be representative of user behaviour.

In addition to relevance-based metrics (precision, nDCG), recom-
mendations were assessed based on intra-list dissimilarities [24]
in terms of diversity (i.e., differences between recommended users)
and novelty (i.e., differences between the recommended and the al-
ready known users). Dissimilarities were measured by the euclidean
distance of structural and content-based vectors. Content-based dis-
tance was computed based on theWord2Vec representation of users’
tweets. For computing structural distances, users were represented
by a vector defining their interaction rate with users from the differ-
ent communities [11] discovered using the Louvain algorithm [2].
As relevance and diversity metrics, which target user satisfaction,
are independent of whether the recommendations include spread-
ers, we assessed user exposure to misinformation, measuring the
ratio of recommended users who were misinformation spreaders.
3.4 Simulating opinion diffusion

Information or opinion propagation models aim to simulate (and
estimate) how information/opinions are propagated over networks
through user interactions. The process takes as input the training
user graph (i.e., the one used as the base for recommendations) and
the recommendations. In each iteration, a random user is selected,
and the next recommendation in their ranking is added to the graph.
In accordance to the attention budget phenomenon [16], for each
newly added edge, we remove users’ eldest neighbour. This allows
discarding any effect associated with graph densification [4, 22].
Then, the update rule of the selected model is applied, and opinions
are modified accordingly. We assume that users accept all recom-
mendations. Although this assumption might be unrealistic [23],
it allows observing how recommendations could shape the net-
work. Once all recommendations for every user are considered, the
simulation continues to let any long-term effect of the final graph
emerge. Iterations are stopped once a stable state is reached.

Simulations were based on the Q-voter model [3]4, which rep-
resents a generalization of the original voter model [14], in which
the opinions of any given user change at random times under the
influence of the opinion of one neighbour. Similarly, in the Q-voter
model, in each iteration, a random user interacts with 𝑞 of their

4The model was implemented as in https://github.com/GiulioRossetti/ndlib

neighbours. Then, if all 𝑞 neighbours share the same opinion, the
user changes their opinion accordingly. Otherwise, the user keeps
their opinion. Opinions are defined as whether users are misinfor-
mation spreaders or not. The number of neighbours 𝑞 was selected
according to a preliminary simulation over the training user graph.

Evaluation metrics. To quantify the effect of recommenders on
spreader propagation, we compared the characteristics of the in-
duced network obtained at the end of the simulation with the real
edge and spreader distribution network based on: i) Percentage of
misinformation spreaders, i.e., the percentage of users at the end
of the simulation that are spreaders. ii) Clustering coefficient mea-
sures how connected user’s neighbours are to each other. Centrality
metrics do not only define how nodes are connected but also how ac-
tively they communicate and how they could influence others [26].
iii) User interaction polarization, we quantify the polarization of
users in terms of the Pearson correlation between users’ spreadness
state and their neighbours state. iv) RandomWalk Controversy Score
(RWC) [10] measures polarization by computing the probability of
a random user being exposed to users from the other group. High
scores indicate a low probability of groups interacting, implying
that the two groups are well separated and thus polarized. Scores
close to 0 indicate a similar probability of users interacting with
others from either group. As the selected model has random com-
ponents (the selection of the user to update and the selected 𝑄

neighbours), we run each model 50 times.
4 ANALYSIS
This section presents the results of the conducted analyses aiming
at answering: RQ1: How do recommenders contribute to misinfor-
mation spreaders recommendations? RQ2: How do recommenders
contribute to amplifying the influence of misinformation spreaders?
Recommendation evaluation
Table 1 presents the recommendation results. For each metric, we
report the average across all users and the standard deviation. Di-
versity and novelty for the base graph were computed considering
the test set as the recommended users. In general, recommenders
achieved low precision and moderate nDCG. The highest relevance
results were obtained with the topology-based recommenders. Pop-
ularity achieved the highest nDCG. Except for the random and
content-based recommenders, statistically significant differences
were observed (with an alpha of 0.01) between the results obtained
for the spreader and non-spreader groups.

https://github.com/GiulioRossetti/ndlib
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Precision nDCG Content-based dissimilarities Structural dissimilarities Misinformation
ExposureDiversity Novelty Diversity Novelty

base graph - - 0.077 ± 0.141 0.294 ± 0.085 0.118 ± 0.217 0.461 ± 0.147 0.18 ± 0.353

Random 0.1 ± 0.01 0.401 ± 0.141 0.373 ± 0.033 0.343 ± 0.046 0.599 ± 0.046 0.547 ± 0.078 0.382 ± 0.154
Popularity 0.111 ± 0.038 0.626 ± 0.254 0.248 ± 0.114 0.301 ± 0.06 0.373 ± 0.18 0.431 ± 0.116 0.164 ± 0.22

Friend-of-Friends 0.203 ± 0.204 0.581 ± 0.186 0.218 ± 0.005 0.258 ± 0.057 0.366 ± 0.011 0.427 ± 0.093 0.196 ± 0.022
Topology - Resource Allocation 0.231 ± 0.193 0.553 ± 0.235 0.248 ± 0.114 0.301 ± 0.06 0.373 ± 0.18 0.431 ± 0.116 0.164 ± 0.22

Content-based 0.1 ± 0.021 0.5 ± 0.13 0.381 ± 0.035 0.346 ± 0.045 0.601 ± 0.045 0.548 ± 0.078 0.371 ± 0.155
Implicit MF 0.109 ± 0.029 0.558 ± 0.266 0.324 ± 0.078 0.347 ± 0.085 0.483 ± 0.073 0.467 ± 0.097 0.161 ± 0.123

Table 1: Relevance, diversity and novelty recommendation results comparison for 𝑘 = 10.

Generally, recommendations’ structural diversity/novelty were
higher than content-based diversity/novelty. Structural diversity/no-
velty indicate that recommended users belonged to communities
that users had not yet explored. These recommendations could
affect network rewiring during simulations as new edges might
connect far away users. Techniques achieving high relevance also
achieved low diversity/novelty scores, as the popularity and topo-
logical recommenders. Conversely, recommenders achieving low
relevance also achieved the highest diversity/novelty as the ran-
dom and content-based recommenders. The fact that recommen-
dations based on the shared content increased content-based di-
versity/novelty could imply that users interact with others sharing
semantically different content, which might be related to the ob-
served cross-group interactions.

As expected, the random recommender achieved the highest
coverage (i.e., the proportion of users that were recommended from
the whole pool of users). In contrast, the lowest coverage was ob-
served for recommenders with low diversity/novelty (e.g., popular-
ity). Content-based recommendations achieved a coverage of 33%,
closely followed by Implicit-MF and FoF. Thus, recommenders with
low coverage foster the densification of certain network regions,
while the others foster a more balanced distribution of edges.

Regarding user exposure to misinformation, considering simi-
lar proportions of spreaders and non-spreaders, recommendations
included less than 40% of misinformation spreaders. The last interac-
tions of the base graph included, on average, only 17% of spreaders.
Scores showed that the most popular recommended users were
mostly non-spreaders. In general, the ratio of recommended spread-
ers was higher for spreaders than for non-spreaders, which implies
that spreaders might be inserted in echo chambers that are strength-
ened as an effect of recommendations.

In summary, the best relevance performing recommenders were
the ones recommending the fewest spreaders, while recom-
menders with increasing diversity/novelty tended to recommend
the highest ratio of spreaders.

Opinion propagation evaluation
Table 2 presents the simulation results. For comparison purposes,
we include the scores obtained when simulating the propagation
over the base graph plus the edges in the test partition. None of the
recommenders greatly increased the proportion of spreaders in the
network Instead, content-based and random decreased it. In the case
of random, spreaders almost disappear from the network. These
recommenders achieved both the largest number of recommended
spreaders and the largest number of users becoming spreaders
for at least one iteration, converting 52% of users. However, as

they also favoured the interactions with novel and far away users,
interactions with spreaders might not have been concentrated in
the same neighbourhood, reducing their joint influence.

Most recommenders contributed to increase the proportion of
users interacting with spreaders, with popularity accounting for the
95% of users with a spreader in their neigbourhood. On the other
hand, random greatly decreased the proportion for non-spreaders,
and increased it for spreaders, inducing segregation in the net-
work. This is confirmed by the interaction correlation [5, 9], which
showed that popularity and topology increased the correlation for
spreaders (i.e, spreaders are surrounded by other spreaders) and de-
creased it for non-spreaders (i.e., there were more spreaders in their
neighbourhood). For non-spreaders, a similar effect is observed for
content and random recommenders.

Regarding clustering coefficient, significant increments were
observed for topology and popularity recommenders, while sig-
nificant decrements were observed for content and random. This
confirms that the interactions added by content and random do
not contribute to increasing user centrality. Also, for those recom-
menders, the clustering coefficient for non-spreaders was higher
than for spreaders, indicating that non-spreaders had a more central
role in the network, while spreaders might not be well connected,
although scattered across the whole network.

Finally, according to RWC, FoF increased group segregation,
while the other recommenders caused users to mix. While reducing
polarity (as defined by the metric) might seem good, it also implies a
higher mixture of user interactions, which might increase spreaders
reachability. When analyzing the individual groups, interactions
between non-spreaders seemed to consolidate. All recommenders
increased the likelihood of spreaders interacting, and perhaps influ-
encing, non-spreaders. Conversely, popularity increased the likeli-
hood of non-spreaders interacting with spreaders.

Observations indicate that recommending a large number of
spreaders does not directly lead to a high conversion rate. In-
stead, recommended spreaders also need to be well connected
with their neighbours to affect spreading.

The number of converted users seemed insufficient to character-
ize spreading dynamics. Generally, recommenders with low cov-
erage and low diversity/novelty strengthened the influence and
centrality of the small set of users involved in more paths around
the network. However, at the same time, their influence is mainly
circumscribed to a “small" network region and can hardly spread.

Recommenders diversifying interactions and fostering connec-
tions with users in other network regions seemed to have a
stronger effect on spreaders presence and interaction dynamics.
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% spreaders Clustering Coefficient User interaction polarization Random Walk Controversy Score

base graph 0.345 ± 0.002 0.033 ± 0.119 0.26 ± 0.001 0.193 ± 0.002

Random 0.042 ± 0 0.003 ± 0.028 0.19 ± 0.001 0.147 ± 0.041
Popularity 0.366 ± 0 0.71 ± 0.31 0.16 ± 0 0.34 ± 0.023

Friend-of-Friends 0.367 ± 0 0.137 ± 0.233 0.245 ± 0 0.363 ± 0.002
Topology - Resource Allocation 0.368 ± 0 0.069 ± 0.167 0.203 ± 0 0.445 ± 0.032

Content-based 0.2 ± 0.001 0.01 ± 0.06 0.173 ± 0 0.143 ± 0.001
Implicit MF 0.369 ± 0 0.033 ± 0.12 0.214 ± 0 0.226 ± 0.021

Table 2: Results for the simulation of opinion propagation

In this scenario, network topology and rewiring seem to be the
greatest drivers for opinion spreading. Then, for those cases that
foster interactions with far away users, it would be interesting to
see how spreading evolves under different rewiring conditions and
levels of network densification.
5 CONCLUSIONS
We presented a preliminary exploration to better understand how
user recommenders affect network dynamics in terms of misinfor-
mation spreader distribution and influence. Our study brings to
attention the potential implications of recommenders in network
evolution and dynamics, serving as a basis to study other related po-
larization phenomena (e.g., echo chambers and filter bubbles). Also,
simulations could help evaluate potential scenarios to test new or
modified recommenders and assess their effects before deployment.

The study presents some limitations. First, recommenders are
agnostic of the particularities of recommended users. For example,
if groups were inverted, recommenders would have fostered the
propagation of non-spreaders instead of spreaders. Then, recom-
menders might need to be enriched with information regarding
user trustworthiness. Second, the used data collection was topically
focused and sparse. Fabbri et al. [6] highlighted that recommenders’
effects varied based on the initial network characteristics. Then, the
study should be replicated considering collections of varying num-
ber, density and misinformation spreader distribution. Third, this
preliminary evaluation included a reduced set of recommenders
and a unique opinion propagation model. More recommenders and
propagation models should be included in the analysis to prove
observations generalizability.

Several aspects could be tackled in future works. First, the evalua-
tion should include additional recommenders, data collections, and
opinion propagation models. Particularly, the definition of spreader
could be relaxed to evaluate continuous opinion models. Second, in
a diversity-enabling scenario, as recommendations can be perceived
as interventions to the organic network dynamics, recommenders
should limit the number of recommendations needed to increase
diversity [21]. Analogously, recommenders could explore which rec-
ommendations cause the largest effect on misinformation spreading
to avoid them or reduce their relevance, among other possibilities.
Third, we adopted a simple rewiring strategy in which their eldest
edge was removed for each added edge to a user. Additional strate-
gies could be considered, and even a probability of edge removal
could be introduced to simulate densification scenarios [19].

ETHICS STATEMENT
Research is based on publicly available Twitter data initially collected and
tagged by third parties. No user identity was used or disclosed in the analysis.
As per Twitter TOS, the shared graphs only include the IDs involved in
the interactions. The analysis performed aims at showing the inadvertent

effects of recommenders on network shaping, and the amplification of
misinformation spreaders’ influence. Nonetheless, it can suffer from bias
stemming, for example, from the data collection and tagging process. In
this sense, biases should be considered before applying any derived result
from this study in real-world settings.
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