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Software Evolution & Dependencies

• As software systems evolve, the amount and complexity of the 

interactions amongst their components often increases.
• More coupling.

• “Undesired” dependencies amongst certain components (e.g., layer bridging, 

direct access to databases, cycles).

• Degradation of intended design.
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Software Evolution & Dependencies

Apache Derby

Introduction of a

Cyclic dependency

SubscriberDB

Violation of architectural 

rules (based on a 

given architecture)
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Software Evolution & Dependencies
apache-camel-2.3.0

apache-camel-2.2.0

apache-camel-2.1.0

apache-camel-2.0.0

apache-camel-1.6.4

apache-camel-1.6.3
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Software Evolution & Dependencies

Apache Derby

Introduction of a

Hub-like dependency
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Software Evolution & Dependencies

• Conscious efforts must be made to stop (or alleviate) degradation.

• Plan for corrective actions (e.g., refactoring).

• Monitor system health (e.g., via metrics).

• Conformance checks.
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Software Evolution & Dependencies

The early detection of such symptoms is important for 

developers, so that they can plan ahead for actions that preserve

the quality of the system.

• Conscious efforts must be made to stop (or alleviate) degradation.

• Plan for corrective actions (e.g., refactoring).

• Monitor system health (e.g., via metrics).

• Conformance checks.
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What can we do about it?

• Different tools available
• LattixDSM, SonarQube, SonarGraph, JITTAC.
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What can we do about it?

• Different tools available
• LattixDSM, SonarQube, SonarGraph, JITTAC.

• Identification of problems once they occurred in the system!

• Tools normally perform a dependency analysis of the source code.

• Compute metrics/indicators, ranking of smells (e.g., by severity).

• Show all these symptoms to developers.
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However, developers may be reluctant to fix problems, when they were 

already introduced in the code.

Particularly, quality-related problems.

Schedule pressures, “it still works”, loss of context.

What can we do about it?
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However, developers may be reluctant to fix problems, when they were 

already introduced in the code.

Particularly, quality-related problems.

Schedule pressures, “it still works”, loss of context.

What can we do about it?

Predict when a dependency-related problem 

is likely to manifest!
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Social Network Analysis to the Rescue!

• Although there are approaches for computing coupling metrics, very few of them 
have dealt with the prediction of dependency relations amongst software 
components. 
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Social Network Analysis to the Rescue!

• Although there are approaches for computing coupling metrics, very few of them 
have dealt with the prediction of dependency relations amongst software 
components. 

• A particular graph-based approach is social networks analysis (SNA), which has 
been used for modelling both nature and human phenomena. 

SNA techniques can predict links that yet do not exist between pairs of nodes in a 
network.
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Social Network Analysis to the Rescue!
…and Software Engineering?

• Evidence that the topological features of dependency graphs can

reveal interesting properties of the software system under analysis.

• Nonetheless, SNA techniques has not yet greatly exploited in the

Software Engineering community.



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Social Network Analysis to the Rescue!
…and Software Engineering?

• Evidence that the topological features of dependency graphs can

reveal interesting properties of the software system under analysis.

• Nonetheless, SNA techniques has not yet greatly exploited in the

Software Engineering community.

We argue that Social Network Analysis techniques need

to be revisited with respect to software dependency prediction!
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• Link Prediction studies the evolution of a network/graph using 

models of network features.
• Infer “missing” links between pairs of nodes.

• Based on the observable links of the network and their attributes.

• Homophily Principle (HP): 

interactions between similar nodes 

occur at a higher rate than interactions 

between dissimilar nodes.

• Most techniques rely on graph 

topological features that assess 

similarity between pairs of nodes.
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First Try: Link Prediction Techniques
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org.apache.derby.impl.sql.execute

org.apache.derby.impl.sql.execute.rts

org.apache.derby.impl.sql.catalog

org.apache.derby.catalog

org.apache.derby.impl.sql

<<use>>

<<use>>

<<use>> <<use>>
<<use>>

Version 10.8.3.0

First Try: Link Prediction Techniques
…but we need a graph

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛, 

where:

• Each node 𝑣 in 𝑉 is Java package, and each 

edge e in E is a usage relationship between a 

pair of packages 𝑣1 and 𝑣2.
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org.apache.derby.impl.sql.execute

org.apache.derby.impl.sql.execute.rts

org.apache.derby.impl.sql.catalog

org.apache.derby.catalog

org.apache.derby.impl.sql

<<use>>

<<use>>

<<use>> <<use>>
<<use>>

Version 10.8.3.0

First Try: Link Prediction Techniques
…but we need a graph

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛, 

where:

• Each node 𝑣 in 𝑉 is Java package, and each 

edge e in E is a usage relationship between a 

pair of packages 𝑣1 and 𝑣2.

• Assumption 1: The package structure remains 

stable over versions.

• Assumption 2: Similar packages have a high 

chance to establish usage dependencies.

• Compute 𝑠𝑐𝑜𝑟𝑒 𝑣1, 𝑣2 to assess similarity.
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org.apache.derby.impl.sql.execute

org.apache.derby.impl.sql.execute.rts
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<<use>> <<use>>
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Version 10.8.3.0

First Try: Link Prediction Techniques
…but we need a graph

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛, 

where:

• Each node 𝑣 in 𝑉 is Java package, and each 

edge e in E is a usage relationship between a 

pair of packages 𝑣1 and 𝑣2.

• Assumption 1: The package structure remains 

stable over versions.

• Assumption 2: Similar packages have a high 

chance to establish usage dependencies.

• Compute 𝑠𝑐𝑜𝑟𝑒 𝑣1, 𝑣2 to assess similarity.
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First Try: Link Prediction Techniques
Measuring Similarity Between Nodes

Common 
Neighbours

Adamic
Adar

Kats Score SimRank …

Kunczynsky
Relative 
Matching

Russel Rao …

Standard Topological Similarity Metrics

Source-code Similarity Metrics
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First Try: Link Prediction Techniques
Measuring Similarity Between Nodes

𝐶𝑜𝑚𝑚𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = Τ 𝑥 ∩ Τ 𝑦

Τ 𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑖𝑚𝑝𝑙. 𝑠𝑞𝑙. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒. 𝑟𝑡𝑠 ∩ Τ 𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑖𝑚𝑝𝑙. 𝑠𝑞𝑙. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

𝐶𝑜𝑚𝑚𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 1

𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔
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To what extent LP can leverage on information from software 

versions to predict likely dependencies in the next version, for 

those pairs of modules that exist in the analysed versions.

First Try: Link Prediction Techniques
What do we want?
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• For a package 𝑝, a ranking of packages is built, based on their chance of having 

a future dependency with 𝑝, according to a similarity metric. 

• For pairs of consecutive versions, the quality of predictions was evaluated in 

terms of precision (i.e., the ratio of actual dependencies discovered to the total 

number of predictions) for the top-N dependencies of the ranking.

To what extent LP can leverage on information from software 

versions to predict likely dependencies in the next version, for 

those pairs of modules that exist in the analysed versions.

First Try: Link Prediction Techniques
What do we want?
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catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

First Try: Link Prediction Techniques
What do we want?

dependency graph 

for 𝑣𝑛
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catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

First Try: Link Prediction Techniques
What do we want?

Will this dependency 

appear on 𝑣𝑛+1?

dependency graph 

for 𝑣𝑛
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catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

Ranking Common Neighbours Adamic-Adar

1 impl.sql impl.sql.execute

2 impl.sql.execute impl.sql

3 impl.sql.conn impl.sql.con

4 impl.db impl.db

5 impl.store.raw.data impl.jdbc

First Try: Link Prediction Techniques
What do we want?

Will this dependency 

appear on 𝑣𝑛+1?

Output for 𝒗𝒏+𝟏

dependency graph 

for 𝑣𝑛
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First Try: Link Prediction Techniques
Study Settings

• We analysed package dependencies in general.

• Unrelated to specific design problems. 

• Dependencies between classes were ignored. 



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Study Settings

• We analysed package dependencies in general.

• Unrelated to specific design problems. 

• Dependencies between classes were ignored. 

We are going to 

tackle this later!
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First Try: Link Prediction Techniques
Study Settings

• We analysed package dependencies in general.

• Unrelated to specific design problems. 

• Dependencies between classes were ignored. 

• For Link Prediction to produce reasonable outputs, a pair of consecutive 

versions:

• 𝑣𝑛 and 𝑣𝑛+1 have approximately the same number of packages.

• 𝑣𝑛+1 adds new dependencies between known packages.

• New dependencies in 𝑣𝑛+1 between new packages are disregarded.

Would require to 

predict new 

packages
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First Try: Link Prediction Techniques
Study Settings

Two small Java systems.

• HealthWatcher (HW)

• 49 KLOC

• SubscriberDB (SDB)

• 10 KLOC

#c #p #deps

HWv1 88 19 67 

HWv2 92 20 70 (+8,-5)

HWv3 104 21 75 (+5)

HWv4 106 22 85 (+10)

HWv5 108 22 86 (+7,-2)

HWv6 112 23 91 

HWv7 116 23 91 

HWv8 120 24 96 (+5)

HWv9 132 24 97 (+1)

HWv10 135 25 101 (+4)

#c #p #deps

SDBv1 98 14 30 

SDBv2 167 16 47 (+17)

SDBv3 192 17 50 (+4,-1)

SDBv4 193 17 50 

SDBv5 193 17 50 

SDBv6 193 17 50 

SDBv7 195 17 50 

SDBv8 195 17 51 (+1)

SDBv9 195 17 51 

SDBv10 195 17 51 
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First Try: Link Prediction Techniques
So far not so good

• Unfortunately, ranking-based LP is not enough for software 

dependencies.
• Precision of predicted links is rather low (0.14-0.25 at most).

• The Homophily Principle does not always hold for Java packages.

• e.g., dependencies might still appear between dissimilar packages.

• Two similar packages can intentionally be designed to not become dependent on 

each other.

• e.g., based on business logic or modularity considerations.
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Second Try: Apply Machine Learning Models

Use  statistical techniques to give computer systems the ability to "learn"  

(on a specific task) with data, without being explicitly programmed

To what extent Link Prediction can leverage on information from the 

current version to predict dependencies in  the next version?

𝑣𝑛 𝑣𝑛+1

current 

version

future 

version

prediction
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Second Try: Apply Machine Learning Models

Use  statistical techniques to give computer systems the ability to "learn"  

(on a specific task) with data, without being explicitly programmed

To what extent Link Prediction can leverage on information from the 

current version to predict dependencies in  the next version?

𝑣𝑛 𝑣𝑛+1

training

set

test

set

prediction
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A binary classifier is trained using the topological information provided by 

a given graph version. 

Second Try: Apply Machine Learning Models
We need a “dataset”
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A binary classifier is trained using the topological information provided by 

a given graph version. 

Second Try: Apply Machine Learning Models
We need a “dataset”

• An instance for the classifier consists of: 

• A pair of nodes. 

• A list of features (e.g., structural metrics) for the pair.

• A label indicating if the nodes are linked (positive class) or not (negative 

class). 
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catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

dependency graph 

for 𝑣𝑛

Second Try: Apply Machine Learning Models
We need a “dataset”

• Existing dependencies are used to compute 

features for instances of the positive class. 

• Missing dependencies are used to compute 

features for instances of the negative class. 

• Both training and test sets need to be defined. 

• The training set considers the known 

structure of 𝑣𝑛.

• The test set considers the full graph of 𝑣𝑛+1.
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impl.sql.catalog uses impl.sql.execute.rts?

yes/no

Second Try: Apply Machine Learning Models
We need a “dataset”

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts Output 𝒗𝒏+𝟏

dependency graph 

for 𝑣𝑛
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0
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Second Try: Apply Machine Learning Models
How did it go?

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR

• The predictions were considered over selected versions.

• The first item is the version for the training set.

• The second one is the version for the test set
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0

0.2

0.4

0.6

0.8

1

A
U

P
R

Second Try: Apply Machine Learning Models
How did it go?

The classifier finds all new dependencies (high recall) but it also mistakenly reports non-

existing dependencies (low precision)

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR
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Second Try: Apply Machine Learning Models
How did it go?

• Better values for the weighted class (both positive and negative instances).

• Average precision values of 0.85 (SDB) and 0.96 (HW)

• However, precision for the positive class was far from ideal!

• Average values of 0.74 (SDB) and 0.23 (HW)

0

0.2

0.4

0.6

0.8

1

A
U

P
R

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR
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• Variations imply it might be difficult to differentiate between dependencies and non-

dependencies due to similar structural characteristics.

• Need to consider additional information for having good predictions.

Second Try: Apply Machine Learning Models
How did it go?

0

0.2

0.4

0.6

0.8

1

A
U

P
R

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR
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To what extent Link Prediction can leverage on information from 

past versions to predict dependencies in  the next version?

𝑣0 𝑣𝑛−1 𝑣𝑛 𝑣𝑛+1

current 

version

future 

version

…

previous versions

prediction

Third Try: Time Series Forecasting
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To what extent Link Prediction can leverage on information from 

past versions to predict dependencies in  the next version?

𝑣0 𝑣𝑛−1 𝑣𝑛 𝑣𝑛+1

current 

version

future 

version

…

previous versions

prediction

Third Try: Time Series Forecasting

Dynamic SNA 
(i.e., observations of the graph at 

different time periods) 
topological features 

Learn a robust ML model 
able to predict new links. 



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Third Try: Time Series Forecasting

dependency 
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

source
target

source uses
target?

Common 
Neighbours

A – B true 0.353

A – D false 0.618

C – B true 0.389

A – E true 0.385

… … …

B – D false 0.605

E - F true 0.171

C - F true 0.1

source
target

source uses
target?

Common 
Neighbours

A – B true 0.233

A – D false 0.518

C – B true 0.289

A – E true 0.235

… … …

B – D false 0.505

estimation
for 𝑣𝑛+1

source
target

source uses
target?

Common 
Neighbours

A – B ? 0.453

A – D ? 0.718

C – B ? 0.289

A – E ? 0.685

… … …

B – D ? 0.805

E - F ? 0.171

C - F ? 0.11

We are not yet predicting new 

dependencies, but estimating the features’ 

scores based on previous versions.
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Third Try: Time Series Forecasting

• Prediction is based on a classifier trained with the 
last known version of the system, 𝑣𝑛.

• The test set considers the estimated feature scores 
for 𝑣𝑛+1.

dependency 
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

source
target

source uses
target?

Common 
Neighbours

A – B true 0.353

A – D false 0.618

C – B true 0.389

A – E true 0.385

… … …

B – D false 0.605

E - F true 0.171

C - F true 0.1

source
target

source uses
target?

Common 
Neighbours

A – B true 0.233

A – D false 0.518

C – B true 0.289

A – E true 0.235

… … …

B – D false 0.505

estimation
for 𝑣𝑛+1

source
target

source uses
target?

Common 
Neighbours

A – B ? 0.453

A – D ? 0.718

C – B ? 0.289

A – E ? 0.685

… … …

B – D ? 0.805

E - F ? 0.171

C - F ? 0.11
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Third Try: Time Series Forecasting

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

v1
v2

v1-
v3

v1-
v4

v1-
v5

v1-
v6

v1-
v7

v1-
v8

v1-
v9

v2-
v3

v2-
v4

v2-
v5

v2-
v6

v2-
v7

v2-
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v4-
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v4-
v9

v5-
v8

v5-
v9

v6-
v8

v6-
v9

v7-
v8

v7-
v9

A
U

P
R

Weighted AUPR when predicting based on Real features

Positive Class AUPR when predicting based on Real features

Weighted AUPR when predicting based on Estimated features

Positive Class AUPR when predicting based on Estimated features

v1
v2

v1
v3

v1
v4

v1
v5

v1
v6

v1
v7

v1 
v8

v1
v9

v2
v3

v2
v4

v2
v5

v2
v6

v2
v7

v2 
v8

v2
v9

v4
v8

v4
v9

v5
v8

v5
v9

v6
v8

v6
v9

v7
v8

v7
v9

• The versions represent the span for the estimations.
• v1-v3 means that v1, v2 and v3 served to estimate the features for v4 (test set).

• Each pair represents the span of estimations, with real versus estimated features.

v3
v8

v3
v9
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Third Try: Time Series Forecasting
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• Better values for the positive class!

• Average values of 0.84.

• Estimated features are “better predictors” than real features.
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Third Try: Time Series Forecasting

• The choice of versions for forecasting was relevant!

• More versions sometimes decreases the quality of the predictions.

• This effect could be related to the structural changes in earch version.
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Lessons Learned
What did we learn?

• We wanted to
• Assess the LP performance in dependency graphs
• Assess the kind of information required for having reasonable predictions.

• Naïve LP techniques are not adequate for the task.

• Leveraging on information from previous versions gives reasonable predictions, 

although not all versions seem useful.
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Lessons Learned
What did we learn?

• We wanted to
• Assess the LP performance in dependency graphs
• Assess the kind of information required for having reasonable predictions.

• Naïve LP techniques are not adequate for the task.

• Leveraging on information from previous versions gives reasonable predictions, 

although not all versions seem useful.

Machine Learning techniques have the potential for 

Link Prediction applied to software dependencies
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• Despite the potential of LP techniques, further investigation is needed. 

• A systematic study with more systems is required to corroborate our initial findings. 

• The features currently used can be extended.

Lessons Learned
What do we do now?
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Develop customized LP algorithms 

for dependency-related problems

(e.g., layering violations, cyles, hub-like configurations)

• Despite the potential of LP techniques, further investigation is needed. 

• A systematic study with more systems is required to corroborate our initial findings. 

• The features currently used can be extended.

Lessons Learned
What do we do now?



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. History-aware Smell Prediction

5. Conclusions and Future Work

Table of Contents



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells

• An architectural bad smell is a commonly used set of architectural design 

decisions that negatively impacts system lifecycle properties.

• E.g. understandability, testability, extensibility, and reusability.
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Dependency-based Smells

• An architectural bad smell is a commonly used set of architectural design 

decisions that negatively impacts system lifecycle properties.

• E.g. understandability, testability, extensibility, and reusability.

• Dependency-based smells involve interactions amongst system components. 

• Occur when one or more components violate design principles or rules.

• Often manifest themselves as undesired dependencies in the source code.
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Dependency-based Smells

Cyclic 
Dependencies

Hub Like 
Dependencies

• An architectural bad smell is a commonly used set of architectural design 

decisions that negatively impacts system lifecycle properties.

• E.g. understandability, testability, extensibility, and reusability.

• Dependency-based smells involve interactions amongst system components. 

• Occur when one or more components violate design principles or rules.

• Often manifest themselves as undesired dependencies in the source code.



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Various components directly or indirectly 
depend on each other to function properly. 

• A case of an undesired dependency.
• Breaks the desirable acyclic nature of a 

subsystem’s dependency structure. 

Dependency-based Smells
Cyclic Dependencies

• Components involved in a cycle can be hard to maintain, test or reuse in isolation. 

• Cycles might have different shapes.
• Different harmful levels for the system health than others. 
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• A component has outgoing and ingoing 

dependencies with a large number of 

other components. 

• Detecting hubs:

1. Computes the median of the number 

of incoming and outgoing 

dependencies of all packages. 

Dependency-based Smells
Hub-like Dependencies

2. For each package: Are both its incoming and outgoing dependencies greater than 

the incoming and outgoing medians?

3. incoming - outgoing dependencies < than a fraction of the total dependencies of 

that package.
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Dependency-based Smells
Once again, we resort to Machine Learning!
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Dependency-based Smells
Once again, we resort to Machine Learning!

predict filter



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Once again, we resort to Machine Learning!

predict filter

predict the appearance 

of new dependencies in 

the next system version

filter the predicted dependencies 
according to the characteristics of 

specific types of smells.
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Dependency-based Smells

Dependency
Predictor

Smell
Specific Filter

Train 
Model

Predicted
Smells

Filtering Phase2
dependency graph + 

predicted dependencies

Prediction Phase1
dependency 

graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

content
features

topological
features

dataset

Evaluate
Model

dataset
potential dependencies

A B

D

C

E

F

1

2

3
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Dependency-based Smells
Prediction Phase

Dependency
Predictor

Train 
Model

dependency graph + 
predicted dependencies

dependency 
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

content
features

topological
features

dataset

Evaluate
Model

dataset
potential dependencies

A B

D

C

E

F

1

2

3

• Individual dependencies are inferred 

based on training a binary 

classification model. 

• Dependency graphs of the current 

(𝑣𝑛) and previous versions (𝑣𝑛−1) are 

used as inputs.

• The output is the set of dependencies 

that are likely to appear in the next 

system version 𝑣𝑛+1. 

• This phase is smell independent. 

• Only identifies dependencies that 

might prefigure different smells in 

the second phase. 
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Dependency-based Smells
Prediction Phase

dependency 
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

content
features

topological
features

dataset

dataset
potential dependencies

1

The prediction phase internally involves 3 steps. 

Step 1

• The instance-based representation are 

constructed, based on both topological and 

content-based features. 

• Existing dependencies → positive class. 

• Missing dependencies → negative class. 

• The training set includes:

• Existing dependencies in 𝑣𝑛−1.

• Missing dependencies in 𝑣𝑛−1.

• Existing dependencies in 𝑣𝑛. 

Dependency
Predictor
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• Content-based features are an alternative (and complementary) similarity criterion to topological features.

• Natural language processing routines are used to transform texts into their bag-of-words 

representations by considering different aspects of the original texts. 

• Restricted to only the appearing nouns, adjective or verbs… 

• Remove punctuation…

Dependency-based Smells
Prediction Phase
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• Content-based features are an alternative (and complementary) similarity criterion to topological features.

• Natural language processing routines are used to transform texts into their bag-of-words 

representations by considering different aspects of the original texts. 

• Restricted to only the appearing nouns, adjective or verbs… 

• Remove punctuation…

• The bag-of-words class representations can be used to assess the similarity amongst the classes.

• Cosine similarity is commonly used.

• Each Java class 𝑐 as a bag-of-words containing the most representative tokens that characterize its 

source code. 

• Either considering the name of the field attributes of the classes, the name of the declared methods 

or the class comments and documentation.

Dependency-based Smells
Prediction Phase
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org.apache.derby.iapi.sql.dictionary.

ColumnDescriptor.java

Method Names

Comments

Fields

Dependency-based Smells
Prediction Phase
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Dependency-based Smells
Prediction Phase

Dependency
Predictor

Train 
Model

dependency 
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

content
features

topological
features

dataset

dataset
potential dependencies

1

2

The prediction phase internally involves 3 steps. 

Step 2

• The classification model is built. 

• The classifier is trained for properly learning 

instances of both the positive and negative 

classes. 

• Includes information of dependencies in 𝑣𝑛−1
being guaranteed that are not going to 

appear in 𝑣𝑛.
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Dependency-based Smells
Prediction Phase

Dependency
Predictor

Train 
Model

dependency graph + 
predicted dependencies

dependency 
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency 
graph for 𝑣𝑛

content
features

topological
features

dataset

Evaluate
Model

dataset
potential dependencies

A B

D

C

E

F

1

2

3

The prediction phase internally involves 

3 steps. 

Step 3

• Dependencies are predicted.

• Only potential dependencies 

considering the packages already 

existing in 𝑣𝑛 are considered.
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Dependency-based Smells
Filtering Phase

Smell
Specific Filter

Predicted
Smells

dependency graph + 
predicted dependencies

A B

D

C

E

F

• The prediction of a dependency is not enough to predict the appearance 

of an architectural smell. 

• Not every predicted dependency might cause an smell to emerge. 

• Predicted dependencies undergo a filtering process.

• Filters are smell-dependent. 
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• Considers only predicted dependencies that would lead to the 

closure of new cycles in 𝑣𝑛+1. 

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to 

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be 

closed.

Dependency-based Smells
Filtering Phase - Cycles
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• Considers only predicted dependencies that would lead to the 

closure of new cycles in 𝑣𝑛+1. 

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to 

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be 

closed.

Dependency-based Smells
Filtering Phase - Cycles
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D
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E

F

this cycle requires two new 

dependencies to be closed

this cycle requires one new 

dependency to be closed
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• Considers only predicted dependencies that would lead to the 

closure of new cycles in 𝑣𝑛+1. 

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to 

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be 

closed.

Dependency-based Smells
Filtering Phase - Cycles

A B

D

C

E

F

the cycle requiring two 

dependencies is not going 

to be found

this cycle requires one new 

dependency to be closed
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• Only the nodes incidental to the predicted edges that fit with the hub definition are actually 

predicted. 
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies. 
• Disregard nodes that might become hubs due to changes in the overall structure of the 

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.

Dependency-based Smells
Filtering Phase - Hubs
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• Only the nodes incidental to the predicted edges that fit with the hub definition are actually 

predicted. 
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies. 
• Disregard nodes that might become hubs due to changes in the overall structure of the 

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.
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Dependency-based Smells
Study Settings

Two medium Java 

systems.

• Apache Derby

• 14 versions.

• 40 KLOC.

• Apache Ant

• 18 versions.

• 60 KLOC.

#c #p #deps #cycles
cycle 

length
#hubs

hub 

degree

derby  

10.5.1.1
1344 96

767 

+10

234 

+4
11.59

28 

+2
27.67

derby  

10.5.3.0
1344 96

768 

+1 234 
11.59

28 
27.71

derby  

10.6.1.0
1387 98

804 

+36

254 

+6
12.99

29 

+3
28.34

derby  

10.6.2.1
1387 98

805 

+1

255 

+1
13.02

29 
28.34

derby  

10.7.1.1
1389 98

807 

+4,-2

257 

+2
12.98

29 
28.44

derby  

10.8.1.2
1395 97

837 

+31,-1

305 

+22
15.17

30 

+1
30.03

derby  

10.8.3.0
1395 96

841 

+3

306 

+1
15.13

30 
30.06

derby  

10.9.1.0
1406 96

851 

+20,-10

280 

+5
13.43

29 

+1
30.62

derby  

10.10.1.1
1453 100

938 

+89,-2

291 

+10
13.32

29 

-1
32.89
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Dependency-based Smells
Study Settings

Two medium Java 

systems.

• Apache Derby

• 14 versions.

• 40 KLOC.

• Apache Ant

• 18 versions.

• 60 KLOC.

#c #p #deps #cycles
cycle 

length
#hubs

hub 

degree

ant 1.6.0 352 24 90 +20,-1 30 +1 3.73 9 +2 14.22

ant 1.6.2 369 24 92 +2 43 +2 4.12 9 14.67

ant 1.6.3 380 25 97 +5 43 +1 4.7 9 15.33

ant 1.7.1 502 29 137 +46,-6 63 +5 5.1 12 +1 17.42
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Dependency-based Smells
How did it go? – Prediction Phase

0

0.2

0.4

0.6

0.8

1

Topology
Positive F-Measure

Topology
Weighted F-Measure

Topology + Content
Positive F-Measure

Topology + Content
Weighted F-Measure

10.3.3.0
10.4.1.0

10.4.2.0
10.5.1.1

10.5.1.1 
10.5.3.0

10.5.3.0
10.6.1.0

10.6.1.0
10.6.2.1

10.6.2.1
10.7.1.1

10.7.1.1
10.8.1.2

10.8.1.2
10.8.2.2

10.8.2.2
10.8.3.0

10.8.3.0
10.9.1.0

10.9.1.0
10.10.1.1

• Compares results of considering either topological or topological + content features.

• Results are presented for those sets of versions in which new dependencies between already existing 

packages were added. 
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Dependency-based Smells
How did it go? – Prediction Phase
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• Adding content-based features increased the quality of the predicted dependencies.
• Average improvements of 27%.
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Topology PP Topology WP Topology PR Topology WR

Topology + Content PP Topology + Content WP Topology + Content PR Topology + Content WR

Dependency-based Smells
How did it go? – Prediction Phase

• High F-Measure values are due to a high recall and a moderate precision. 

• The trained model is capable of finding most future dependencies, but it also predicts false 

dependencies.
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Dependency-based Smells
How did it go? – Cycle Prediction
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• In most cases recall is almost perfect (almost every new dependency leading to the closure of a quasi-

cycle was found).

• Precision indicates that some mistaken dependencies are also predicted.

• At most 5 mistaken predictions (0.06% of total dependencies).
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Dependency-based Smells
How did it go? – Cycle Prediction
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• Similar performance for both variants.

• Quasi-cycles are closed by adding only one dependency or by multiple dependencies that also 

individually close cycles.
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Dependency-based Smells
How did it go? – Cycle Prediction

• Differences between the variants could be explained by the existence of quasi-cycles needing +1 

dependency to be closed. 

• Precision of individual-analysis is not affected, but recall decreases. 
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Precision individual-analysis Recall individual-analysis

Precision all-dependencies Recall all-dependencies
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Dependency-based Smells
How did it go? – Hub Prediction
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Precision individual-analysis Recall individual-analysis Precision all-node-dependencies

Recall all-node-dependencies Precision all-dependencies Recall all-dependencies

• The performance of the variants differ. 

• individual-analysis. ↓recall (highest number of missed nodes) ↑ precision (fewest mistaken predictions)

• all-node. ↑ recall → precision (mistaken predictions) → neighbourhood more important than overall structure

• all-dependencies. ↓recall ↓precision
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Dependency-based Smells
How did it go? – Hub Prediction
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• At least one missed smell.

• Mistaken predictions in the first phase.

• Hubs might not only depend on the addition of new edges but on the overall graph structure.

• Hubs might also depend on the unknown structure of the graph (dependencies added between yet unknown 

packages).
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• An initial evaluation with two types of smells showed a good performance!

• High recall, low precision.

• Including content-based features improves dependency prediction.

• The choice of the filter variant (for a given smell type) can affect both 

recall and precision. 

• We preferred good recall over precision in the analysed cases.

• Smell predictions depended on both the current overall system structure 

and version history.

Lessons Learned



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Perform a systematic study with more systems and other dependency-

based smells.

• The prediction capabilities are sensitive to the prediction model.

• Analyse and extend the set of features used.

• Considering software specific-metrics?

• Smells might not be harmful.

• How can we train a model to discard them?

Lessons Learned
What do we do now?
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• Perform a systematic study with more systems and other dependency-

based smells.

• The prediction capabilities are sensitive to the prediction model.

• Analyse and extend the set of features used.

• Considering software specific-metrics?

• Smells might not be harmful.

• How can we train a model to discard them?

Lessons Learned
What do we do now?

Increase 

precision!
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Time-series Smell Prediction

• Most link prediction approaches have been proposed based on static network 

representations.

• A snapshot of the network is available and the goal is to predict the future links.
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Time-series Smell Prediction

• Most link prediction approaches have been proposed based on static network 

representations.

• A snapshot of the network is available and the goal is to predict the future links.

• Nonetheless, networks are dynamic and perhaps nondeterministic.

• Changes in the underlying structure and parameters over time. 

• In these cases, additional information could be extracted from the history of network 

evolution. 
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Time-series Smell Prediction

• Most link prediction approaches have been proposed based on static network 

representations.

• A snapshot of the network is available and the goal is to predict the future links.

• Nonetheless, networks are dynamic and perhaps nondeterministic.

• Changes in the underlying structure and parameters over time. 

• In these cases, additional information could be extracted from the history of network 

evolution. 

Link prediction techniques could be enriched by including time series

information and reinforcement learning mechanisms.
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predict filter

Time-series Smell Prediction
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predict filter
reinforce 
learning

Time-series Smell Prediction

adjust the confidence of predictions
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Leverages on the history of software versions to estimate the confidence of predictions. 

Three phases:

1. Considering the information of two software versions, it predicts the appearance of 

new dependencies in the next system version. 
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Leverages on the history of software versions to estimate the confidence of predictions. 

Three phases:

1. Considering the information of two software versions, it predicts the appearance of 

new dependencies in the next system version. 

2. Smells are filtered and ranked according to:

• The characteristics of the specific types of smells.

• The confidence score of the predicted dependencies.

Time-series Smell Prediction
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Leverages on the history of software versions to estimate the confidence of predictions. 

Three phases:

1. Considering the information of two software versions, it predicts the appearance of 

new dependencies in the next system version. 

2. Smells are filtered and ranked according to:

• The characteristics of the specific types of smells.

• The confidence score of the predicted dependencies.

3. When the next system version is known, the confidence of predicted dependencies is 

updated to reflect the actual changes in the actual dependency graph.

• Applies an adaptation of reinforcement learning.

Time-series Smell Prediction
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• Up to now, all predicted smells were presented to the developer, which resulted in the 

mistaken prediction of smells. 

Time-series Smell Prediction 
Filtering & Ranking
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• Up to now, all predicted smells were presented to the developer, which resulted in the 

mistaken prediction of smells. 

• Once smells are predicted and prioritised, we need to define which of them are going 

to be presented.

• Choosing the number of smells to recommend might not be easy!

Time-series Smell Prediction 
Filtering & Ranking
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Several alternatives:

• Set a fixed threshold and always recommend the same number of smells.

• Threshold could be based on relevancy scores, a percentage of instances or the 

number of predicted items.

• This has several drawbacks. 

• Ignores the characteristics of the task at hand. 

• Might fail to acknowledge the possibility of rankings presenting different scores 

distributions. 

Time-series Smell Prediction 
Filtering & Ranking
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Several alternatives:

• The number of smells to predict will be chosen according to the history of 

discoverable smells in the previous versions. 

• The average number of predictable smells in the previous versions of the system plus 

its standard deviation.

Time-series Smell Prediction 
Filtering & Ranking
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Time-series Smell Prediction 
Reinforcement Learning

• When the following software 

version is known, the 

reinforcement learning phase 

updates the relevance of 

dependencies based on the 

structure of the newest system 

version. 

• Includes additional information 

regarding the evolution of the 

network.
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Time-series Smell Prediction 
Reinforcement Learning

• A pool of predicted dependencies is maintained. 

• In every iteration, new predicted dependencies are 
added to the pool and associated to a learning 
automaton that updates the confidence of the predicted 
dependency according to changes in the environment. 

• The learning automaton starts with a confidence of 1. 
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Time-series Smell Prediction 
Reinforcement Learning

For each predicted dependency there are 

two possibilities. 



A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction 
Reinforcement Learning

For each predicted dependency there are 

two possibilities. 

1. The dependency appears on the new 

software version → It is removed from the 

pool. 
removed 

from the 

pool
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Time-series Smell Prediction 
Reinforcement Learning

For each predicted dependency there are 

two possibilities. 

1. The dependency appears on the new 

software version → It is removed from the 

pool. 

2. The dependency does not appear on the 

new software version → The associated 

the learning automaton decreases its 

confidence to penalise the incorrect 

prediction. 

removed 

from the 

pooldecreased 

confidence

𝐶𝑛+1 = 1 – 𝑏 ∗ 𝐶𝑛
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We still need to tailor the size of the ranking.

Time-series Smell Prediction 
How did it go?
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Apache Camel
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How did it go?
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We still need to tailor the size of the ranking.

Precision classif + filtering Recall classif + filtering NDCG classif + filtering

Precision classif + filtering + reinforcement Recall classif + filtering + reinforcement NDCG classif + filtering + reinforcement
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Summary
• As software systems evolve “undesired” dependencies 

appear.

• Degradation of intended design.
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Summary
• As software systems evolve “undesired” dependencies 

appear.

• Degradation of intended design.

Plan ahead for actions that preserve

the quality of the system.

Machine Learning can help predict dependencies.

Predicted dependencies can be used to predict smells.
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We are far from finished… 

• Can communities help boost predictions?

• More features.

• Design metrics? OO metrics? Global characteristics of smells?

• Analyse other dependency-based problems!

• Analyse other types of smells?

• Can we predict the appearance of new nodes (e.g. new packages, classes)?

• Can we predict the disappearance of dependencies?

• How about a tool?

"Now this is not the end. It is not even the beginning of the end. 

But it is, perhaps, the end of the beginning."

… and a lot more!
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Questions?
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