
Keeping one-step ahead of

Architectural Smells:
A Machine Learning Application

Dr. Antonela Tommasel

ISISTAN, CONICET-UNICEN, Argentina

antonela.tommasel@isistan.unicen.edu.ar

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Who am I?

• Dr. Antonela Tommasel
• PhD in Computer Sciences at UNICEN, December 2017

• Work at ISISTAN, CONICET-UNICEN.

• Teacher at UNICEN.

• Research Interests:
• Recommender systems

• Text Mining

• Social Media

• Machine Learning

• …

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Table of Contents

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. History-aware Smell Prediction

5. Conclusions and Future Work

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. History-aware Smell Prediction

5. Conclusions and Future Work

Table of Contents

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

• As software systems evolve, the amount and complexity of the

interactions amongst their components often increases.
• More coupling.

• “Undesired” dependencies amongst certain components (e.g., layer bridging,

direct access to databases, cycles).

• Degradation of intended design.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

• As software systems evolve, the amount and complexity of the

interactions amongst their components often increases.
• More coupling.

• “Undesired” dependencies amongst certain components (e.g., layer bridging,

direct access to databases, cycles).

• Degradation of intended design.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

• As software systems evolve, the amount and complexity of the

interactions amongst their components often increases.
• More coupling.

• “Undesired” dependencies amongst certain components (e.g., layer bridging,

direct access to databases, cycles).

• Degradation of intended design.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

Apache Derby

Introduction of a

Cyclic dependency

SubscriberDB

Violation of architectural

rules (based on a

given architecture)

searchCriterion

ui.edit

<<use>>

update

add

list

ui.mailing

ui.search.personUtils

ui.search

Persistence

<<use>>

<<use>>

<<use>>

<<use>>
update

ui.add

<<use>>

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies
apache-camel-2.3.0

apache-camel-2.2.0

apache-camel-2.1.0

apache-camel-2.0.0

apache-camel-1.6.4

apache-camel-1.6.3

apache-camel-1.6.2

apache-camel-1.6.1

apache-camel-1.6.0

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

Apache Derby

Introduction of a

Hub-like dependency

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

• Conscious efforts must be made to stop (or alleviate) degradation.

• Plan for corrective actions (e.g., refactoring).

• Monitor system health (e.g., via metrics).

• Conformance checks.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Software Evolution & Dependencies

The early detection of such symptoms is important for

developers, so that they can plan ahead for actions that preserve

the quality of the system.

• Conscious efforts must be made to stop (or alleviate) degradation.

• Plan for corrective actions (e.g., refactoring).

• Monitor system health (e.g., via metrics).

• Conformance checks.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

What can we do about it?

• Different tools available
• LattixDSM, SonarQube, SonarGraph, JITTAC.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

What can we do about it?

• Different tools available
• LattixDSM, SonarQube, SonarGraph, JITTAC.

• Identification of problems once they occurred in the system!

• Tools normally perform a dependency analysis of the source code.

• Compute metrics/indicators, ranking of smells (e.g., by severity).

• Show all these symptoms to developers.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

However, developers may be reluctant to fix problems, when they were

already introduced in the code.

Particularly, quality-related problems.

Schedule pressures, “it still works”, loss of context.

What can we do about it?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

However, developers may be reluctant to fix problems, when they were

already introduced in the code.

Particularly, quality-related problems.

Schedule pressures, “it still works”, loss of context.

What can we do about it?

Predict when a dependency-related problem

is likely to manifest!

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Social Network Analysis to the Rescue!

• Although there are approaches for computing coupling metrics, very few of them
have dealt with the prediction of dependency relations amongst software
components.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Social Network Analysis to the Rescue!

• Although there are approaches for computing coupling metrics, very few of them
have dealt with the prediction of dependency relations amongst software
components.

• A particular graph-based approach is social networks analysis (SNA), which has
been used for modelling both nature and human phenomena.

SNA techniques can predict links that yet do not exist between pairs of nodes in a
network.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Social Network Analysis to the Rescue!
…and Software Engineering?

• Evidence that the topological features of dependency graphs can

reveal interesting properties of the software system under analysis.

• Nonetheless, SNA techniques has not yet greatly exploited in the

Software Engineering community.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Social Network Analysis to the Rescue!
…and Software Engineering?

• Evidence that the topological features of dependency graphs can

reveal interesting properties of the software system under analysis.

• Nonetheless, SNA techniques has not yet greatly exploited in the

Software Engineering community.

We argue that Social Network Analysis techniques need

to be revisited with respect to software dependency prediction!

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. Time-series Smell Prediction

5. Conclusions and Future Work

Table of Contents

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Link Prediction studies the evolution of a network/graph using

models of network features.
• Infer “missing” links between pairs of nodes.

• Based on the observable links of the network and their attributes.

• Homophily Principle (HP):

interactions between similar nodes

occur at a higher rate than interactions

between dissimilar nodes.

• Most techniques rely on graph

topological features that assess

similarity between pairs of nodes.

A

B

D

C

E

F

A

B

D

C

E

F
Time

First Try: Link Prediction Techniques

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

org.apache.derby.impl.sql.execute

org.apache.derby.impl.sql.execute.rts

org.apache.derby.impl.sql.catalog

org.apache.derby.catalog

org.apache.derby.impl.sql

<<use>>

<<use>>

<<use>> <<use>>
<<use>>

Version 10.8.3.0

First Try: Link Prediction Techniques
…but we need a graph

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛,

where:

• Each node 𝑣 in 𝑉 is Java package, and each

edge e in E is a usage relationship between a

pair of packages 𝑣1 and 𝑣2.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

org.apache.derby.impl.sql.execute

org.apache.derby.impl.sql.execute.rts

org.apache.derby.impl.sql.catalog

org.apache.derby.catalog

org.apache.derby.impl.sql

<<use>>

<<use>>

<<use>> <<use>>
<<use>>

Version 10.8.3.0

First Try: Link Prediction Techniques
…but we need a graph

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛,

where:

• Each node 𝑣 in 𝑉 is Java package, and each

edge e in E is a usage relationship between a

pair of packages 𝑣1 and 𝑣2.

• Assumption 1: The package structure remains

stable over versions.

• Assumption 2: Similar packages have a high

chance to establish usage dependencies.

• Compute 𝑠𝑐𝑜𝑟𝑒 𝑣1, 𝑣2 to assess similarity.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

org.apache.derby.impl.sql.execute

org.apache.derby.impl.sql.execute.rts

org.apache.derby.impl.sql.catalog

org.apache.derby.catalog

org.apache.derby.impl.sql

<<use>>

<<use>>

<<use>> <<use>>
<<use>>

Version 10.8.3.0

First Try: Link Prediction Techniques
…but we need a graph

• Build a graph 𝐷𝐺 𝑉, 𝐸 for system version 𝑛,

where:

• Each node 𝑣 in 𝑉 is Java package, and each

edge e in E is a usage relationship between a

pair of packages 𝑣1 and 𝑣2.

• Assumption 1: The package structure remains

stable over versions.

• Assumption 2: Similar packages have a high

chance to establish usage dependencies.

• Compute 𝑠𝑐𝑜𝑟𝑒 𝑣1, 𝑣2 to assess similarity.

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Measuring Similarity Between Nodes

Common
Neighbours

Adamic
Adar

Kats Score SimRank …

Kunczynsky
Relative
Matching

Russel Rao …

Standard Topological Similarity Metrics

Source-code Similarity Metrics

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Measuring Similarity Between Nodes

𝐶𝑜𝑚𝑚𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = Τ 𝑥 ∩ Τ 𝑦

Τ 𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑖𝑚𝑝𝑙. 𝑠𝑞𝑙. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒. 𝑟𝑡𝑠 ∩ Τ 𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑖𝑚𝑝𝑙. 𝑠𝑞𝑙. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

𝐶𝑜𝑚𝑚𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 1

𝑜𝑟𝑔. 𝑎𝑝𝑎𝑐ℎ𝑒. 𝑑𝑒𝑟𝑏𝑦. 𝑐𝑎𝑡𝑎𝑙𝑜𝑔

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

To what extent LP can leverage on information from software

versions to predict likely dependencies in the next version, for

those pairs of modules that exist in the analysed versions.

First Try: Link Prediction Techniques
What do we want?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• For a package 𝑝, a ranking of packages is built, based on their chance of having

a future dependency with 𝑝, according to a similarity metric.

• For pairs of consecutive versions, the quality of predictions was evaluated in

terms of precision (i.e., the ratio of actual dependencies discovered to the total

number of predictions) for the top-N dependencies of the ranking.

To what extent LP can leverage on information from software

versions to predict likely dependencies in the next version, for

those pairs of modules that exist in the analysed versions.

First Try: Link Prediction Techniques
What do we want?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

First Try: Link Prediction Techniques
What do we want?

dependency graph

for 𝑣𝑛

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

First Try: Link Prediction Techniques
What do we want?

Will this dependency

appear on 𝑣𝑛+1?

dependency graph

for 𝑣𝑛

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

Ranking Common Neighbours Adamic-Adar

1 impl.sql impl.sql.execute

2 impl.sql.execute impl.sql

3 impl.sql.conn impl.sql.con

4 impl.db impl.db

5 impl.store.raw.data impl.jdbc

First Try: Link Prediction Techniques
What do we want?

Will this dependency

appear on 𝑣𝑛+1?

Output for 𝒗𝒏+𝟏

dependency graph

for 𝑣𝑛

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Study Settings

• We analysed package dependencies in general.

• Unrelated to specific design problems.

• Dependencies between classes were ignored.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Study Settings

• We analysed package dependencies in general.

• Unrelated to specific design problems.

• Dependencies between classes were ignored.

We are going to

tackle this later!

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Study Settings

• We analysed package dependencies in general.

• Unrelated to specific design problems.

• Dependencies between classes were ignored.

• For Link Prediction to produce reasonable outputs, a pair of consecutive

versions:

• 𝑣𝑛 and 𝑣𝑛+1 have approximately the same number of packages.

• 𝑣𝑛+1 adds new dependencies between known packages.

• New dependencies in 𝑣𝑛+1 between new packages are disregarded.

Would require to

predict new

packages

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
Study Settings

Two small Java systems.

• HealthWatcher (HW)

• 49 KLOC

• SubscriberDB (SDB)

• 10 KLOC

#c #p #deps

HWv1 88 19 67

HWv2 92 20 70 (+8,-5)

HWv3 104 21 75 (+5)

HWv4 106 22 85 (+10)

HWv5 108 22 86 (+7,-2)

HWv6 112 23 91

HWv7 116 23 91

HWv8 120 24 96 (+5)

HWv9 132 24 97 (+1)

HWv10 135 25 101 (+4)

#c #p #deps

SDBv1 98 14 30

SDBv2 167 16 47 (+17)

SDBv3 192 17 50 (+4,-1)

SDBv4 193 17 50

SDBv5 193 17 50

SDBv6 193 17 50

SDBv7 195 17 50

SDBv8 195 17 51 (+1)

SDBv9 195 17 51

SDBv10 195 17 51

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

First Try: Link Prediction Techniques
So far not so good

• Unfortunately, ranking-based LP is not enough for software

dependencies.
• Precision of predicted links is rather low (0.14-0.25 at most).

• The Homophily Principle does not always hold for Java packages.

• e.g., dependencies might still appear between dissimilar packages.

• Two similar packages can intentionally be designed to not become dependent on

each other.

• e.g., based on business logic or modularity considerations.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Second Try: Apply Machine Learning Models

Use statistical techniques to give computer systems the ability to "learn"

(on a specific task) with data, without being explicitly programmed

To what extent Link Prediction can leverage on information from the

current version to predict dependencies in the next version?

𝑣𝑛 𝑣𝑛+1

current

version

future

version

prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Second Try: Apply Machine Learning Models

Use statistical techniques to give computer systems the ability to "learn"

(on a specific task) with data, without being explicitly programmed

To what extent Link Prediction can leverage on information from the

current version to predict dependencies in the next version?

𝑣𝑛 𝑣𝑛+1

training

set

test

set

prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

A binary classifier is trained using the topological information provided by

a given graph version.

Second Try: Apply Machine Learning Models
We need a “dataset”

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

A binary classifier is trained using the topological information provided by

a given graph version.

Second Try: Apply Machine Learning Models
We need a “dataset”

• An instance for the classifier consists of:

• A pair of nodes.

• A list of features (e.g., structural metrics) for the pair.

• A label indicating if the nodes are linked (positive class) or not (negative

class).

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts

dependency graph

for 𝑣𝑛

Second Try: Apply Machine Learning Models
We need a “dataset”

• Existing dependencies are used to compute

features for instances of the positive class.

• Missing dependencies are used to compute

features for instances of the negative class.

• Both training and test sets need to be defined.

• The training set considers the known

structure of 𝑣𝑛.

• The test set considers the full graph of 𝑣𝑛+1.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

impl.sql.catalog uses impl.sql.execute.rts?

yes/no

Second Try: Apply Machine Learning Models
We need a “dataset”

catalog

impl.sql.

catalogimpl.sql.

execute

impl.sql.

execute.rts Output 𝒗𝒏+𝟏

dependency graph

for 𝑣𝑛

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

0

0.2

0.4

0.6

0.8

1

A
U

P
R

Second Try: Apply Machine Learning Models
How did it go?

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR

• The predictions were considered over selected versions.

• The first item is the version for the training set.

• The second one is the version for the test set

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

0

0.2

0.4

0.6

0.8

1

A
U

P
R

Second Try: Apply Machine Learning Models
How did it go?

The classifier finds all new dependencies (high recall) but it also mistakenly reports non-

existing dependencies (low precision)

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Second Try: Apply Machine Learning Models
How did it go?

• Better values for the weighted class (both positive and negative instances).

• Average precision values of 0.85 (SDB) and 0.96 (HW)

• However, precision for the positive class was far from ideal!

• Average values of 0.74 (SDB) and 0.23 (HW)

0

0.2

0.4

0.6

0.8

1

A
U

P
R

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Variations imply it might be difficult to differentiate between dependencies and non-

dependencies due to similar structural characteristics.

• Need to consider additional information for having good predictions.

Second Try: Apply Machine Learning Models
How did it go?

0

0.2

0.4

0.6

0.8

1

A
U

P
R

v2 v3 v3 v4 v4 v5 v8 v9 v9 v10v1 v2 v2 v3 v7 v8

Subscriber DB Health Watcher

Weighted AUPR Positive Class AUPR

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

To what extent Link Prediction can leverage on information from

past versions to predict dependencies in the next version?

𝑣0 𝑣𝑛−1 𝑣𝑛 𝑣𝑛+1

current

version

future

version

…

previous versions

prediction

Third Try: Time Series Forecasting

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

To what extent Link Prediction can leverage on information from

past versions to predict dependencies in the next version?

𝑣0 𝑣𝑛−1 𝑣𝑛 𝑣𝑛+1

current

version

future

version

…

previous versions

prediction

Third Try: Time Series Forecasting

Dynamic SNA
(i.e., observations of the graph at

different time periods)
topological features

Learn a robust ML model
able to predict new links.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Third Try: Time Series Forecasting

dependency
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

source
target

source uses
target?

Common
Neighbours

A – B true 0.353

A – D false 0.618

C – B true 0.389

A – E true 0.385

… … …

B – D false 0.605

E - F true 0.171

C - F true 0.1

source
target

source uses
target?

Common
Neighbours

A – B true 0.233

A – D false 0.518

C – B true 0.289

A – E true 0.235

… … …

B – D false 0.505

estimation
for 𝑣𝑛+1

source
target

source uses
target?

Common
Neighbours

A – B ? 0.453

A – D ? 0.718

C – B ? 0.289

A – E ? 0.685

… … …

B – D ? 0.805

E - F ? 0.171

C - F ? 0.11

We are not yet predicting new

dependencies, but estimating the features’

scores based on previous versions.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Third Try: Time Series Forecasting

• Prediction is based on a classifier trained with the
last known version of the system, 𝑣𝑛.

• The test set considers the estimated feature scores
for 𝑣𝑛+1.

dependency
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

source
target

source uses
target?

Common
Neighbours

A – B true 0.353

A – D false 0.618

C – B true 0.389

A – E true 0.385

… … …

B – D false 0.605

E - F true 0.171

C - F true 0.1

source
target

source uses
target?

Common
Neighbours

A – B true 0.233

A – D false 0.518

C – B true 0.289

A – E true 0.235

… … …

B – D false 0.505

estimation
for 𝑣𝑛+1

source
target

source uses
target?

Common
Neighbours

A – B ? 0.453

A – D ? 0.718

C – B ? 0.289

A – E ? 0.685

… … …

B – D ? 0.805

E - F ? 0.171

C - F ? 0.11

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Third Try: Time Series Forecasting

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

v1
v2

v1-
v3

v1-
v4

v1-
v5

v1-
v6

v1-
v7

v1-
v8

v1-
v9

v2-
v3

v2-
v4

v2-
v5

v2-
v6

v2-
v7

v2-
v8

v2-
v9

v3-
v8

v3-
v9

v4-
v8

v4-
v9

v5-
v8

v5-
v9

v6-
v8

v6-
v9

v7-
v8

v7-
v9

A
U

P
R

Weighted AUPR when predicting based on Real features

Positive Class AUPR when predicting based on Real features

Weighted AUPR when predicting based on Estimated features

Positive Class AUPR when predicting based on Estimated features

v1
v2

v1
v3

v1
v4

v1
v5

v1
v6

v1
v7

v1
v8

v1
v9

v2
v3

v2
v4

v2
v5

v2
v6

v2
v7

v2
v8

v2
v9

v4
v8

v4
v9

v5
v8

v5
v9

v6
v8

v6
v9

v7
v8

v7
v9

• The versions represent the span for the estimations.
• v1-v3 means that v1, v2 and v3 served to estimate the features for v4 (test set).

• Each pair represents the span of estimations, with real versus estimated features.

v3
v8

v3
v9

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Third Try: Time Series Forecasting

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

v1
v2

v1-
v3

v1-
v4

v1-
v5

v1-
v6

v1-
v7

v1-
v8

v1-
v9

v2-
v3

v2-
v4

v2-
v5

v2-
v6

v2-
v7

v2-
v8

v2-
v9

v3-
v8

v3-
v9

v4-
v8

v4-
v9

v5-
v8

v5-
v9

v6-
v8

v6-
v9

v7-
v8

v7-
v9

A
U

P
R

Weighted AUPR when predicting based on Real features

Positive Class AUPR when predicting based on Real features

Weighted AUPR when predicting based on Estimated features

Positive Class AUPR when predicting based on Estimated features

v1
v2

v1
v3

v1
v4

v1
v5

v1
v6

v1
v7

v1
v8

v1
v9

v2
v3

v2
v4

v2
v5

v2
v6

v2
v7

v2
v8

v2
v9

v3
v8

v3
v9

v4
v8

v4
v9

v5
v8

v5
v9

v6
v8

v6
v9

v7
v8

v7
v9

• Better values for the positive class!

• Average values of 0.84.

• Estimated features are “better predictors” than real features.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Third Try: Time Series Forecasting

• The choice of versions for forecasting was relevant!

• More versions sometimes decreases the quality of the predictions.

• This effect could be related to the structural changes in earch version.

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

v1
v2

v1-
v3

v1-
v4

v1-
v5

v1-
v6

v1-
v7

v1-
v8

v1-
v9

v2-
v3

v2-
v4

v2-
v5

v2-
v6

v2-
v7

v2-
v8

v2-
v9

v3-
v8

v3-
v9

v4-
v8

v4-
v9

v5-
v8

v5-
v9

v6-
v8

v6-
v9

v7-
v8

v7-
v9

A
U

P
R

Weighted AUPR when predicting based on Real features

Positive Class AUPR when predicting based on Real features

Weighted AUPR when predicting based on Estimated features

Positive Class AUPR when predicting based on Estimated features

v1
v2

v1
v3

v1
v4

v1
v5

v1
v6

v1
v7

v1
v8

v1
v9

v2
v3

v2
v4

v2
v5

v2
v6

v2
v7

v2
v8

v2
v9

v3
v8

v3
v9

v4
v8

v4
v9

v5
v8

v5
v9

v6
v8

v6
v9

v7
v8

v7
v9

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Lessons Learned
What did we learn?

• We wanted to
• Assess the LP performance in dependency graphs
• Assess the kind of information required for having reasonable predictions.

• Naïve LP techniques are not adequate for the task.

• Leveraging on information from previous versions gives reasonable predictions,

although not all versions seem useful.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Lessons Learned
What did we learn?

• We wanted to
• Assess the LP performance in dependency graphs
• Assess the kind of information required for having reasonable predictions.

• Naïve LP techniques are not adequate for the task.

• Leveraging on information from previous versions gives reasonable predictions,

although not all versions seem useful.

Machine Learning techniques have the potential for

Link Prediction applied to software dependencies

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Despite the potential of LP techniques, further investigation is needed.

• A systematic study with more systems is required to corroborate our initial findings.

• The features currently used can be extended.

Lessons Learned
What do we do now?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Develop customized LP algorithms

for dependency-related problems

(e.g., layering violations, cyles, hub-like configurations)

• Despite the potential of LP techniques, further investigation is needed.

• A systematic study with more systems is required to corroborate our initial findings.

• The features currently used can be extended.

Lessons Learned
What do we do now?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. History-aware Smell Prediction

5. Conclusions and Future Work

Table of Contents

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells

• An architectural bad smell is a commonly used set of architectural design

decisions that negatively impacts system lifecycle properties.

• E.g. understandability, testability, extensibility, and reusability.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells

• An architectural bad smell is a commonly used set of architectural design

decisions that negatively impacts system lifecycle properties.

• E.g. understandability, testability, extensibility, and reusability.

• Dependency-based smells involve interactions amongst system components.

• Occur when one or more components violate design principles or rules.

• Often manifest themselves as undesired dependencies in the source code.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells

Cyclic
Dependencies

Hub Like
Dependencies

• An architectural bad smell is a commonly used set of architectural design

decisions that negatively impacts system lifecycle properties.

• E.g. understandability, testability, extensibility, and reusability.

• Dependency-based smells involve interactions amongst system components.

• Occur when one or more components violate design principles or rules.

• Often manifest themselves as undesired dependencies in the source code.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Various components directly or indirectly
depend on each other to function properly.

• A case of an undesired dependency.
• Breaks the desirable acyclic nature of a

subsystem’s dependency structure.

Dependency-based Smells
Cyclic Dependencies

• Components involved in a cycle can be hard to maintain, test or reuse in isolation.

• Cycles might have different shapes.
• Different harmful levels for the system health than others.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• A component has outgoing and ingoing

dependencies with a large number of

other components.

• Detecting hubs:

1. Computes the median of the number

of incoming and outgoing

dependencies of all packages.

Dependency-based Smells
Hub-like Dependencies

2. For each package: Are both its incoming and outgoing dependencies greater than

the incoming and outgoing medians?

3. incoming - outgoing dependencies < than a fraction of the total dependencies of

that package.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Once again, we resort to Machine Learning!

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Once again, we resort to Machine Learning!

predict filter

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Once again, we resort to Machine Learning!

predict filter

predict the appearance

of new dependencies in

the next system version

filter the predicted dependencies
according to the characteristics of

specific types of smells.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells

Dependency
Predictor

Smell
Specific Filter

Train
Model

Predicted
Smells

Filtering Phase2
dependency graph +

predicted dependencies

Prediction Phase1
dependency

graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

content
features

topological
features

dataset

Evaluate
Model

dataset
potential dependencies

A B

D

C

E

F

1

2

3

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Prediction Phase

Dependency
Predictor

Train
Model

dependency graph +
predicted dependencies

dependency
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

content
features

topological
features

dataset

Evaluate
Model

dataset
potential dependencies

A B

D

C

E

F

1

2

3

• Individual dependencies are inferred

based on training a binary

classification model.

• Dependency graphs of the current

(𝑣𝑛) and previous versions (𝑣𝑛−1) are

used as inputs.

• The output is the set of dependencies

that are likely to appear in the next

system version 𝑣𝑛+1.

• This phase is smell independent.

• Only identifies dependencies that

might prefigure different smells in

the second phase.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Prediction Phase

dependency
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

content
features

topological
features

dataset

dataset
potential dependencies

1

The prediction phase internally involves 3 steps.

Step 1

• The instance-based representation are

constructed, based on both topological and

content-based features.

• Existing dependencies → positive class.

• Missing dependencies → negative class.

• The training set includes:

• Existing dependencies in 𝑣𝑛−1.

• Missing dependencies in 𝑣𝑛−1.

• Existing dependencies in 𝑣𝑛.

Dependency
Predictor

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Content-based features are an alternative (and complementary) similarity criterion to topological features.

• Natural language processing routines are used to transform texts into their bag-of-words

representations by considering different aspects of the original texts.

• Restricted to only the appearing nouns, adjective or verbs…

• Remove punctuation…

Dependency-based Smells
Prediction Phase

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Content-based features are an alternative (and complementary) similarity criterion to topological features.

• Natural language processing routines are used to transform texts into their bag-of-words

representations by considering different aspects of the original texts.

• Restricted to only the appearing nouns, adjective or verbs…

• Remove punctuation…

• The bag-of-words class representations can be used to assess the similarity amongst the classes.

• Cosine similarity is commonly used.

• Each Java class 𝑐 as a bag-of-words containing the most representative tokens that characterize its

source code.

• Either considering the name of the field attributes of the classes, the name of the declared methods

or the class comments and documentation.

Dependency-based Smells
Prediction Phase

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

org.apache.derby.iapi.sql.dictionary.

ColumnDescriptor.java

Method Names

Comments

Fields

Dependency-based Smells
Prediction Phase

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Prediction Phase

Dependency
Predictor

Train
Model

dependency
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

content
features

topological
features

dataset

dataset
potential dependencies

1

2

The prediction phase internally involves 3 steps.

Step 2

• The classification model is built.

• The classifier is trained for properly learning

instances of both the positive and negative

classes.

• Includes information of dependencies in 𝑣𝑛−1
being guaranteed that are not going to

appear in 𝑣𝑛.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Prediction Phase

Dependency
Predictor

Train
Model

dependency graph +
predicted dependencies

dependency
graph for 𝑣𝑛−1

A B

D

C

E

A B

D

C

E

F

dependency
graph for 𝑣𝑛

content
features

topological
features

dataset

Evaluate
Model

dataset
potential dependencies

A B

D

C

E

F

1

2

3

The prediction phase internally involves

3 steps.

Step 3

• Dependencies are predicted.

• Only potential dependencies

considering the packages already

existing in 𝑣𝑛 are considered.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Filtering Phase

Smell
Specific Filter

Predicted
Smells

dependency graph +
predicted dependencies

A B

D

C

E

F

• The prediction of a dependency is not enough to predict the appearance

of an architectural smell.

• Not every predicted dependency might cause an smell to emerge.

• Predicted dependencies undergo a filtering process.

• Filters are smell-dependent.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Considers only predicted dependencies that would lead to the

closure of new cycles in 𝑣𝑛+1.

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be

closed.

Dependency-based Smells
Filtering Phase - Cycles

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Considers only predicted dependencies that would lead to the

closure of new cycles in 𝑣𝑛+1.

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be

closed.

Dependency-based Smells
Filtering Phase - Cycles

A B

D

C

E

F

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Considers only predicted dependencies that would lead to the

closure of new cycles in 𝑣𝑛+1.

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be

closed.

Dependency-based Smells
Filtering Phase - Cycles

A B

D

C

E

F

this cycle requires two new

dependencies to be closed

this cycle requires one new

dependency to be closed

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Considers only predicted dependencies that would lead to the

closure of new cycles in 𝑣𝑛+1.

Two variants:

• All predicted dependencies are simultaneously considered.

• Allows to detect cycles needed more than one dependency to

be closed.

• Dependencies are individually analysed.

• Allows to detect cycles needed only one dependency to be

closed.

Dependency-based Smells
Filtering Phase - Cycles

A B

D

C

E

F

the cycle requiring two

dependencies is not going

to be found

this cycle requires one new

dependency to be closed

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Only the nodes incidental to the predicted edges that fit with the hub definition are actually

predicted.
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies.
• Disregard nodes that might become hubs due to changes in the overall structure of the

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.

Dependency-based Smells
Filtering Phase - Hubs

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Only the nodes incidental to the predicted edges that fit with the hub definition are actually

predicted.
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies.
• Disregard nodes that might become hubs due to changes in the overall structure of the

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.

Dependency-based Smells
Filtering Phase - Hubs

A B

D

C

E

F

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Only the nodes incidental to the predicted edges that fit with the hub definition are actually

predicted.
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies.
• Disregard nodes that might become hubs due to changes in the overall structure of the

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.

Dependency-based Smells
Filtering Phase - Hubs

A B

D

C

E

F

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Only the nodes incidental to the predicted edges that fit with the hub definition are actually

predicted.
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies.
• Disregard nodes that might become hubs due to changes in the overall structure of the

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.

Dependency-based Smells
Filtering Phase - Hubs

A B

D

C

E

F

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Only the nodes incidental to the predicted edges that fit with the hub definition are actually

predicted.
• Allow the detection of those nodes becoming hubs due to the addition of new dependencies.
• Disregard nodes that might become hubs due to changes in the overall structure of the

dependency graph.

Three variants:

• Dependencies are individually analysed.

• Dependencies are grouped per node.

• All predicted dependencies are simultaneously considered.

Dependency-based Smells
Filtering Phase - Hubs

A B

D

C

E

F

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Study Settings

Two medium Java

systems.

• Apache Derby

• 14 versions.

• 40 KLOC.

• Apache Ant

• 18 versions.

• 60 KLOC.

#c #p #deps #cycles
cycle

length
#hubs

hub

degree

derby

10.5.1.1
1344 96

767

+10

234

+4
11.59

28

+2
27.67

derby

10.5.3.0
1344 96

768

+1 234
11.59

28
27.71

derby

10.6.1.0
1387 98

804

+36

254

+6
12.99

29

+3
28.34

derby

10.6.2.1
1387 98

805

+1

255

+1
13.02

29
28.34

derby

10.7.1.1
1389 98

807

+4,-2

257

+2
12.98

29
28.44

derby

10.8.1.2
1395 97

837

+31,-1

305

+22
15.17

30

+1
30.03

derby

10.8.3.0
1395 96

841

+3

306

+1
15.13

30
30.06

derby

10.9.1.0
1406 96

851

+20,-10

280

+5
13.43

29

+1
30.62

derby

10.10.1.1
1453 100

938

+89,-2

291

+10
13.32

29

-1
32.89

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
Study Settings

Two medium Java

systems.

• Apache Derby

• 14 versions.

• 40 KLOC.

• Apache Ant

• 18 versions.

• 60 KLOC.

#c #p #deps #cycles
cycle

length
#hubs

hub

degree

ant 1.6.0 352 24 90 +20,-1 30 +1 3.73 9 +2 14.22

ant 1.6.2 369 24 92 +2 43 +2 4.12 9 14.67

ant 1.6.3 380 25 97 +5 43 +1 4.7 9 15.33

ant 1.7.1 502 29 137 +46,-6 63 +5 5.1 12 +1 17.42

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Prediction Phase

0

0.2

0.4

0.6

0.8

1

Topology
Positive F-Measure

Topology
Weighted F-Measure

Topology + Content
Positive F-Measure

Topology + Content
Weighted F-Measure

10.3.3.0
10.4.1.0

10.4.2.0
10.5.1.1

10.5.1.1
10.5.3.0

10.5.3.0
10.6.1.0

10.6.1.0
10.6.2.1

10.6.2.1
10.7.1.1

10.7.1.1
10.8.1.2

10.8.1.2
10.8.2.2

10.8.2.2
10.8.3.0

10.8.3.0
10.9.1.0

10.9.1.0
10.10.1.1

• Compares results of considering either topological or topological + content features.

• Results are presented for those sets of versions in which new dependencies between already existing

packages were added.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Prediction Phase

0

0.2

0.4

0.6

0.8

1

Topology
Positive F-Measure

Topology
Weighted F-Measure

Topology + Content
Positive F-Measure

Topology + Content
Weighted F-Measure

10.3.3.0
10.4.1.0

10.4.2.0
10.5.1.1

10.5.1.1
10.5.3.0

10.5.3.0
10.6.1.0

10.6.1.0
10.6.2.1

10.6.2.1
10.7.1.1

10.7.1.1
10.8.1.2

10.8.1.2
10.8.2.2

10.8.2.2
10.8.3.0

10.8.3.0
10.9.1.0

10.9.1.0
10.10.1.1

• Adding content-based features increased the quality of the predicted dependencies.
• Average improvements of 27%.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

0.5

0.6

0.7

0.8

0.9

1

10.3.3.0
10.4.1.0

10.4.2.0
10.5.1.1

10.5.1.1
10.5.3.0

10.5.3.0
10.6.1.0

10.6.1.0
10.6.2.1

10.6.2.1
10.7.1.1

10.7.1.1
10.8.1.2

10.8.1.2
10.8.2.2

10.8.2.2
10.8.3.0

10.8.3.0
10.9.1.0

10.9.1.0
10.10.1.1

Topology PP Topology WP Topology PR Topology WR

Topology + Content PP Topology + Content WP Topology + Content PR Topology + Content WR

Dependency-based Smells
How did it go? – Prediction Phase

• High F-Measure values are due to a high recall and a moderate precision.

• The trained model is capable of finding most future dependencies, but it also predicts false

dependencies.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Cycle Prediction

0

0.2

0.4

0.6

0.8

1

10.4.1.0

10.4.2.0

10.5.1.1

10.5.1.1

10.5.3.0

10.6.1.0

10.5.3.0

10.6.1.0

10.6.2.1

10.6.1.0

10.6.2.1

10.7.1.1

10.6.2.1

10.7.1.1

10.8.1.2

10.8.1.2

10.8.2.2

10.8.3.0

10.8.2.2

10.8.3.0

10.9.1.0

10.8.3.0

10.9.1.0

10.10.1.1

Precision individual-analysis Recall individual-analysis

Precision all-dependencies Recall all-dependencies

• In most cases recall is almost perfect (almost every new dependency leading to the closure of a quasi-

cycle was found).

• Precision indicates that some mistaken dependencies are also predicted.

• At most 5 mistaken predictions (0.06% of total dependencies).

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Cycle Prediction

0

0.2

0.4

0.6

0.8

1

10.4.1.0

10.4.2.0

10.5.1.1

10.5.1.1

10.5.3.0

10.6.1.0

10.5.3.0

10.6.1.0

10.6.2.1

10.6.1.0

10.6.2.1

10.7.1.1

10.6.2.1

10.7.1.1

10.8.1.2

10.8.1.2

10.8.2.2

10.8.3.0

10.8.2.2

10.8.3.0

10.9.1.0

10.8.3.0

10.9.1.0

10.10.1.1

Precision individual-analysis Recall individual-analysis

Precision all-dependencies Recall all-dependencies

• Similar performance for both variants.

• Quasi-cycles are closed by adding only one dependency or by multiple dependencies that also

individually close cycles.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Cycle Prediction

• Differences between the variants could be explained by the existence of quasi-cycles needing +1

dependency to be closed.

• Precision of individual-analysis is not affected, but recall decreases.

0

0.2

0.4

0.6

0.8

1

ant-1.5.2
ant-1.5.3-1
ant-1.6.0

ant-1.6.0
ant-1.6.1
ant-1.6.2

ant-1.6.1
ant-1.6.2
ant-1.6.3

ant-1.6.4
ant-1.6.5
ant-1.7.1

ant-1.6.5
ant-1.7.1
ant-1.8.0

ant-1.7.1
ant-1.8.0
ant-1.9.3

Precision individual-analysis Recall individual-analysis

Precision all-dependencies Recall all-dependencies

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Hub Prediction

0

0.2

0.4

0.6

0.8

1

derby-10.4.1.0

derby-10.4.2.0

derby-10.5.1.1

derby-10.5.1.1

derby-10.5.3.0

derby-10.6.1.0

derby-10.6.2.1

derby-10.7.1.1

derby-10.8.1.2

derby-10.8.2.2

derby-10.8.3.0

derby-10.9.1.0

derby-10.8.3.0

derby-10.9.1.0

derby-

10.10.1.1
Precision individual-analysis Recall individual-analysis Precision all-node-dependencies

Recall all-node-dependencies Precision all-dependencies Recall all-dependencies

• The performance of the variants differ.

• individual-analysis. ↓recall (highest number of missed nodes) ↑ precision (fewest mistaken predictions)

• all-node. ↑ recall → precision (mistaken predictions) → neighbourhood more important than overall structure

• all-dependencies. ↓recall ↓precision

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Dependency-based Smells
How did it go? – Hub Prediction

0

0.2

0.4

0.6

0.8

1

derby-10.4.1.0

derby-10.4.2.0

derby-10.5.1.1

derby-10.5.1.1

derby-10.5.3.0

derby-10.6.1.0

derby-10.6.2.1

derby-10.7.1.1

derby-10.8.1.2

derby-10.8.2.2

derby-10.8.3.0

derby-10.9.1.0

derby-10.8.3.0

derby-10.9.1.0

derby-

10.10.1.1
Precision individual-analysis Recall individual-analysis Precision all-node-dependencies

Recall all-node-dependencies Precision all-dependencies Recall all-dependencies

• At least one missed smell.

• Mistaken predictions in the first phase.

• Hubs might not only depend on the addition of new edges but on the overall graph structure.

• Hubs might also depend on the unknown structure of the graph (dependencies added between yet unknown

packages).

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• An initial evaluation with two types of smells showed a good performance!

• High recall, low precision.

• Including content-based features improves dependency prediction.

• The choice of the filter variant (for a given smell type) can affect both

recall and precision.

• We preferred good recall over precision in the analysed cases.

• Smell predictions depended on both the current overall system structure

and version history.

Lessons Learned

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Perform a systematic study with more systems and other dependency-

based smells.

• The prediction capabilities are sensitive to the prediction model.

• Analyse and extend the set of features used.

• Considering software specific-metrics?

• Smells might not be harmful.

• How can we train a model to discard them?

Lessons Learned
What do we do now?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Perform a systematic study with more systems and other dependency-

based smells.

• The prediction capabilities are sensitive to the prediction model.

• Analyse and extend the set of features used.

• Considering software specific-metrics?

• Smells might not be harmful.

• How can we train a model to discard them?

Lessons Learned
What do we do now?

Increase

precision!

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. History-aware Smell Prediction

5. Conclusions and Future Work

Table of Contents

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction

• Most link prediction approaches have been proposed based on static network

representations.

• A snapshot of the network is available and the goal is to predict the future links.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction

• Most link prediction approaches have been proposed based on static network

representations.

• A snapshot of the network is available and the goal is to predict the future links.

• Nonetheless, networks are dynamic and perhaps nondeterministic.

• Changes in the underlying structure and parameters over time.

• In these cases, additional information could be extracted from the history of network

evolution.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction

• Most link prediction approaches have been proposed based on static network

representations.

• A snapshot of the network is available and the goal is to predict the future links.

• Nonetheless, networks are dynamic and perhaps nondeterministic.

• Changes in the underlying structure and parameters over time.

• In these cases, additional information could be extracted from the history of network

evolution.

Link prediction techniques could be enriched by including time series

information and reinforcement learning mechanisms.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

predict filter

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

predict filter
reinforce
learning

Time-series Smell Prediction

adjust the confidence of predictions

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Leverages on the history of software versions to estimate the confidence of predictions.

Three phases:

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Leverages on the history of software versions to estimate the confidence of predictions.

Three phases:

1. Considering the information of two software versions, it predicts the appearance of

new dependencies in the next system version.

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Leverages on the history of software versions to estimate the confidence of predictions.

Three phases:

1. Considering the information of two software versions, it predicts the appearance of

new dependencies in the next system version.

2. Smells are filtered and ranked according to:

• The characteristics of the specific types of smells.

• The confidence score of the predicted dependencies.

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Leverages on the history of software versions to estimate the confidence of predictions.

Three phases:

1. Considering the information of two software versions, it predicts the appearance of

new dependencies in the next system version.

2. Smells are filtered and ranked according to:

• The characteristics of the specific types of smells.

• The confidence score of the predicted dependencies.

3. When the next system version is known, the confidence of predicted dependencies is

updated to reflect the actual changes in the actual dependency graph.

• Applies an adaptation of reinforcement learning.

Time-series Smell Prediction

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Up to now, all predicted smells were presented to the developer, which resulted in the

mistaken prediction of smells.

Time-series Smell Prediction
Filtering & Ranking

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

• Up to now, all predicted smells were presented to the developer, which resulted in the

mistaken prediction of smells.

• Once smells are predicted and prioritised, we need to define which of them are going

to be presented.

• Choosing the number of smells to recommend might not be easy!

Time-series Smell Prediction
Filtering & Ranking

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Several alternatives:

• Set a fixed threshold and always recommend the same number of smells.

• Threshold could be based on relevancy scores, a percentage of instances or the

number of predicted items.

• This has several drawbacks.

• Ignores the characteristics of the task at hand.

• Might fail to acknowledge the possibility of rankings presenting different scores

distributions.

Time-series Smell Prediction
Filtering & Ranking

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Several alternatives:

• The number of smells to predict will be chosen according to the history of

discoverable smells in the previous versions.

• The average number of predictable smells in the previous versions of the system plus

its standard deviation.

Time-series Smell Prediction
Filtering & Ranking

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction
Reinforcement Learning

• When the following software

version is known, the

reinforcement learning phase

updates the relevance of

dependencies based on the

structure of the newest system

version.

• Includes additional information

regarding the evolution of the

network.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction
Reinforcement Learning

• A pool of predicted dependencies is maintained.

• In every iteration, new predicted dependencies are
added to the pool and associated to a learning
automaton that updates the confidence of the predicted
dependency according to changes in the environment.

• The learning automaton starts with a confidence of 1.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction
Reinforcement Learning

For each predicted dependency there are

two possibilities.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction
Reinforcement Learning

For each predicted dependency there are

two possibilities.

1. The dependency appears on the new

software version → It is removed from the

pool.
removed

from the

pool

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Time-series Smell Prediction
Reinforcement Learning

For each predicted dependency there are

two possibilities.

1. The dependency appears on the new

software version → It is removed from the

pool.

2. The dependency does not appear on the

new software version → The associated

the learning automaton decreases its

confidence to penalise the incorrect

prediction.

removed

from the

pooldecreased

confidence

𝐶𝑛+1 = 1 – 𝑏 ∗ 𝐶𝑛

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

We still need to tailor the size of the ranking.

Time-series Smell Prediction
How did it go?

0.1

0.3

0.5

0.7

0.9

Precision classif + filtering Recall classif + filtering NDCG classif + filtering

Precision classif + filtering + reinforcement Recall classif + filtering + reinforcement NDCG classif + filtering + reinforcement

1.6.3
1.6.4
2.0.0

1.6.4
2.0.0
2.1.0

2.1.0
2.2.0
2.3.0

2.2.0
2.3.0
2.4.0

2.4.0
2.5.0
2.6.0

2.7.4
2.7.5
2.8.0

2.8.3
2.8.4
2.8.5

2.9.3
2.9.4
2.9.5

2.9.7
2.9.8

2.10.0

2.10.1
2.10.2
2.10.3

2.10.6
2.10.7
2.11.0

2.14.3
2.14.4
2.15.0

2.15.5
2.15.6
2.16.0

Apache Camel

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

0

0.2

0.4

0.6

0.8

1

Time-series Smell Prediction
How did it go?

1.3.3
1.3.4
1.3.5

1.3.6
1.3.7
1.4.0

1.4.2
1.4.3
1.4.4

1.4.20
1.4.21
1.5.0

1.5.1
1.5.2
1.5.3

1.5.9
6.0.0
6.1.0

6.1.1
6.2.0
6.3.0

6.5.0
6.6.0
6.7.0

6.11.0
6.12.0
6.13.0

6.22.0
6.23.0
7.0.0

Apache Wicket

We still need to tailor the size of the ranking.

Precision classif + filtering Recall classif + filtering NDCG classif + filtering

Precision classif + filtering + reinforcement Recall classif + filtering + reinforcement NDCG classif + filtering + reinforcement

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

1. Introduction & Motivation

2. Predicting Dependencies

3. Predicting Smells

4. History-aware Smell Prediction

5. Conclusions and Future Work

Table of Contents

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Summary
• As software systems evolve “undesired” dependencies

appear.

• Degradation of intended design.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Summary
• As software systems evolve “undesired” dependencies

appear.

• Degradation of intended design.

Machine Learning can help predict dependencies.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Summary
• As software systems evolve “undesired” dependencies

appear.

• Degradation of intended design.

Machine Learning can help predict dependencies.

Predicted dependencies can be used to predict smells.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Summary
• As software systems evolve “undesired” dependencies

appear.

• Degradation of intended design.

Plan ahead for actions that preserve

the quality of the system.

Machine Learning can help predict dependencies.

Predicted dependencies can be used to predict smells.

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

We are far from finished…

• Can communities help boost predictions?

• More features.

• Design metrics? OO metrics? Global characteristics of smells?

• Analyse other dependency-based problems!

• Analyse other types of smells?

• Can we predict the appearance of new nodes (e.g. new packages, classes)?

• Can we predict the disappearance of dependencies?

• How about a tool?

"Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning."

… and a lot more!

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Questions?

A. Tommasel ISISTAN, CONICET-UNICEN

Keeping one-step ahead of Architectural Smells: A Machine Learning Application

Two and a Half Papers

• Diaz-Pace, J.A., Tommasel, A., and Godoy, D. “Can Network Analysis Techniques help to
Predict Design Dependencies? An Initial Study”. In Proceedings of the IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2018). Seattle USA. April, 2018.
https://arxiv.org/abs/1808.02776v1

• Diaz-Pace, J.A., Tommasel, A., and Godoy, D. “Towards Anticipation of Architectural Smells
using Link Prediction Techniques”. In Proceedings of the 18th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2018). Madrid, Spain.
September, 2018. http://arxiv.org/abs/1808.06362

https://arxiv.org/abs/1808.02776v1
http://arxiv.org/abs/1808.06362

Keeping one-step ahead of

Architectural Smells:
A Machine Learning Application

Dr. Antonela Tommasel

ISISTAN, CONICET-UNICEN, Argentina

antonela.tommasel@isistan.unicen.edu.ar

