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ABSTRACT
Even though the Internet and social media are usually safe and
enjoyable, communication through social media also bears risks.
For more than ten years, there have been concerns regarding the
manipulation of public opinion through the social Web. In particu-
lar, misinformation spreading has proven effective in influencing
people, their beliefs and behaviors, from swaying opinions on elec-
tions to having direct consequences on health during the COVID-19
pandemic. Most techniques in the literature focus on identifying
the individual pieces of misinformation or fake news based on a
set of stylistic, content-derived features, user profiles or sharing
statistics. Recently, those methods have been extended to identify
spreaders. However, they are not enough to effectively detect either
fake content or the users spreading it. In this context, this paper
presents an initial proof of concept of a deep learning model for
identifying fake news spreaders in social media, focusing not only
on the characteristics of the shared content but also on user in-
teractions and the resulting content propagation tree structures.
Although preliminary, an experimental evaluation over COVID-
related data showed promising results, significantly outperforming
other alternatives in the literature.

CCS CONCEPTS
• Information systems → Social networking sites; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
In recent years, social media has profoundly changed how people
consume information to the extent that it arises as one of the pri-
mary news sources [8]. One of the most valuable features of social
platforms is their potential to propagate information on a large
scale. However, the unmoderated nature of social media sites, and
the potential for automation and fast propagation make it easy for
users to share inaccurate or intentionally misleading information,
thus threatening access to reliable and trustworthy information.

Fake or unreliable content can severely affect society, posing sig-
nificant threats to democracies and economy. With the COVID-19
pandemic, health misinformation arose as a threat to public health,
ranging from the viralization of harmful treatments to conspiracies.
In turn, this can also affect how people perceive content [8]. First,
repeated exposure can alter the likelihood of accepting fake content
as truth, especially when the fake content aligns with internal be-
liefs [7]. Second, as fake content proliferates, the line between what
is fake or not becomes more uncertain, inducing users to doubt the
nature of all content and to think that all content is biased, hinder-
ing the differentiation between fake and authentic content [8]. In
the long term, the trustworthiness of the entire news ecosystem
might be at risk. Thereby, it is crucial to detect and mitigate the
propagation of fake content.

Users play a fundamental role as creators and disseminators of
fake content. Therefore, it is essential to detect both fake content
and the users spreading it, as the latter will provide valuable infor-
mation for the design of mitigation or intervention strategies to
rapidly contain the spreading [21]. In this sense, the need to identify
fake news spreaders on social media has never been more acute.
This paper presents an initial proof of concept of a deep learning
model for identifying fake news spreaders in social media. Our model
includes not only features derived from the shared content, but also
the content propagation trees and user community interactions. To
support our proposal, we conducted a preliminary evaluation over
a COVID-19 misinformation data collection. Results showed that
the proposed model can effectively identify fake news spreaders
when compared to traditional and state-of-the-art baselines.

2 RELATEDWORK
The detection of fake content has been widely tackled in the liter-
ature. Initial works were usually based on linguistic characteris-
tics [24]. However, as fake news are designed to be misguiding, it
might be challenging to distinguish them by the text alone. Hence,
some approaches included social context information in the detec-
tion [25], such as user profile and network features [17]. Recent
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advances include using convolutional and recurrent neural net-
works to learn temporal representations from textual features and,
in some cases, content propagation networks [11].

Similar techniques have been developed for fake news spreaders
identification. For example, Sansonetti et al. [20] considered hand-
crafted user profile features, including screenname length, user
description length, number of followers/friends, account’s age, aver-
age number of daily statuses, and the overall sentiment score for all
shared tweets. Giachanou et al. [5] proposed different content-based
features, including word embeddings, LIWC categories, personality
traits, communication style, sentiment, emotion and readability
scores, and word embeddings. Sharma and Sharma [22] combined
user features with an average word2vec representation of content
for rumour spreader detection. Shrestha and Spezzano [23] consid-
ered demographics and behavioral features. Demographic features
included age, gender and political orientation. As those features
were not explicitly available, the authors inferred them from the
content shared by users. Caution should be exercised when con-
sidering these types of features as they might introduce biases and
reinforce stereotypes [2]. On the other hand, behavioural features
were related to the moment of the day and week on which posts
were shared. Ghanem et al. [4] divided user timelines into fixed-
size chunks (i.e., a user could be represented by multiple chunks),
which were represented by a combination of GloVE embeddings
and semantic and stylistic features (e.g., emotions, morality, and
style). Despite the different nature of the selected features, some
works have reported that lexical and sentiment features were the
most relevant for classification. In all cases, either traditional or
simple neural network models were trained.

Other approaches have focused on network topology. Truong
et al. [27] proposed variations of PageRank and HITS centrality met-
rics for ranking spreaders in different news sharing networks. Rath
et al. [18] proposed an inductive representation learning framework
based on community health assessment and interpersonal trust to
detect spreaders in densely-connected communities.

As exposed, approaches in the literature have focused either on
content, hand-crafted, or network topology features, disregarding
their complementary nature. For example, as fake content is inten-
tionally written to mislead users, detecting it based only on the
shared content might be nontrivial. Fake content might also attempt
to distort the truth by adopting similar linguistic styles to authentic
content, thus affecting hand-crafted features [24]. Similarly, only
considering network topology might lead to incomplete and noisy
networks [26].

3 MODELING FAKE NEWS SPREADERS
DETECTION

For a given user 𝑢𝑖 and their past interactions (𝜏 (𝑢𝑖 )), the shared
content (𝑇𝑢𝑖 ), and the content propagation trees (𝑃𝑟𝑇

(
𝑇𝑢𝑖

)
), the goal

is to learn a function 𝐹 (𝜏 (𝑢𝑖 ) ,𝑇𝑢𝑖 , 𝑃𝑟𝑇
(
𝑇𝑢𝑖

)
) → {1,−1} , where 1

indicates that 𝑢𝑖 is a fake news spreader, and −1 otherwise. Note
that while we define the task as a binary classification problem, it
could be transformed into a regression problem, in which the goal
is to learn a score of how likely the user is to be a spreader. An
overview of the architecture is presented in Figure 1.

User representation. To model the heterogeneous nature of so-
cial media, the shared content, and the involved participants, user
representation is divided into three components: user/tweet fea-
tures, social interactions, and tweet propagation trees. Features are
represented by a vector concatenating characteristics such as per-
sonality traits, readability scores, LIWC categories, sentiment and
emotions1. When appropriate, features were standardized. Extreme
values were clipped to the [−2, 2] range, which works as a Gradient
Clipping to help speed up training and reduce noise [28].

Previous works [25, 27] have shown the importance of network
topology and interactions to identify both fake news and their
spreaders. In this sense, user representation includes their social
interactions modeled by Graph Convolutional Networks (GCNs).
GCNs [10] allow representing nodes based on their characteristics
and those of their interactions. Defining three concatenated GCNs
allows including interactions from up to 3-hop neighbours, i.e., user
community structures are characterized by considering both the
direct and explicit user interactions and the neighbourhoods of
such interactions. GCNs were implemented based on:

𝐺𝐶𝑁 (𝑋, �̂�, 𝐴) = 𝑓

(
�̂�− 1

2𝐴�̂�− 1
2𝑋𝑊 + 𝑏

)
(1)

Here, 𝐴 represents the adjacency user matrix (obtained from the
user graph), 𝐼 is the identity matrix, 𝐴 = 𝐴 + 𝐼 , �̂�𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 , 𝑓 is

the ReLU activation function, 𝑋 is the user feature matrix,𝑊 is a
matrix of trainable weights, and 𝑏 is the trainable bias vector. For
each user to classify, 𝑋 includes their user feature vector and those
of the users in their 3-hop neighbourhood. Then, the GCNs outputs
a matrix representing all users in 𝑋 , from which we keep the vector
representing the user to classify.

Given the complex nature of information propagation, the defini-
tion of discriminant and hand-crafted features based on the content
propagation structure might be complex and biased [13]. For ex-
ample, features representing summary statistics such as centrality,
cliques, or connected components might be too general to express
the particularities of content cascades [14]. In this sense, to capture
the semantics of propagation patterns, we represent each shared
tweet based on a propagation tree derived from the triggered replies.
Note that while the user graph focuses on users’ complete set of in-
teractions, these trees are concernedwith the specific responses that
each tweet originated, regardless of the users who wrote them. Each
tweet is represented by its propagation tree, its pooled BERT [3]
embeddings, and the pooled BERT embeddings of the tweets in its
propagation tree. Then, the propagation trees (𝐴 in Eq. 1) and the
embeddings (𝑋 in Eq. 1) are fed to a single GCN. The output of the
GCN is fed to three parallel dense layers to generate the Query, Key,
and Value that will be the input to a multi-headed self-attention
mechanism, which aims at better learning how tweets interact with
each other. For example, the mechanism is expected to discover
relations between tweets that are similar in content or style but
are not explicitly connected. Finally, the output of the attention
mechanism is passed through a max-pooling layer to obtain the
vector representing users’ tweets.

Model prediction. Once the user and tweet representations are
obtained, they are concatenatedwith the original user feature vector

1More details and the full set of characteristics can be found at https://github.com/
tommantonela/umap2022-fake-news-spreaders.
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Figure 1: Schematic diagram of the proposed model

and passed through two dense layers to compute the output of the
model. The first dense layer has a ReLU activation function, while
the last one has a linear one. Due to hardware limitations, it might be
unfeasible to make all estimations simultaneously, as the resulting
adjacency matrices would require large amounts of memory. For
this reason, predictions were made on mini-batches of 10 users.

Model training. The model was trained using a Hinge loss func-
tion with class weights (Eq. 2), where 1 is the error margin, 𝑦𝑡
represents the true class of users, 𝑦𝑝 is the prediction, and𝑤𝑦𝑡 is
the balanced class weight. Depending on a margin allows the Hinge
loss to select decision boundaries far from the instances of both
classes, increasing its robustness [19]. 𝑦𝑡 can be 1 or −1, where 1
represents the positive class (i.e., the user is a spreader), and −1
represents the negative class (i.e., the user is not a spreader). When
𝑦𝑡 and 𝑦𝑝 have the same sign and |𝑦𝑝 | ≥ 1, the prediction is correct,
and thus 𝑙𝑜𝑠𝑠 is 0. On the other hand, when they have opposite
signs, the prediction is incorrect, and 𝑙𝑜𝑠𝑠 increases. Similarly, even
when having the same sign, if |𝑦𝑝 | < 1, 𝑙𝑜𝑠𝑠 would also increase as
the margin is not enough to deem the prediction as correct.

𝑙𝑜𝑠𝑠 (𝑦𝑡 , 𝑦𝑝 ) =
∑
𝑤𝑦𝑡 ·𝑚𝑎𝑥 (0, 1 − 𝑦𝑡 · 𝑦𝑝 )

𝑁
(2)

Class weights2 were defined as 𝑤𝑦𝑡 = |𝑠𝑎𝑚𝑝𝑙𝑒𝑠 |/(2 · |𝑦𝑡 |) and
aimed to compensate for unbalanced class distribution in training,
which would induce a majority class prediction. In this sense, the
model would prefer to misclassify instances of the minority class
instead of moving predictions from the majority class inside the
predefined margin.

4 EXPERIMENTAL SETTINGS
Data collection. Evaluationwas based on FibVid, a COVID-related
misinformation dataset [9]3. The collection is based on news claims
2Class weights were computed following the balanced sklearn strategy:
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.
compute_class_weight.html
3The collection is originally available at https://doi.org/10.5281/zenodo.4441377

appearing in Politifact and Snopes. From each news claim, the au-
thors extracted keywords that were then searched on Twitter to
retrieve the associated content. Tweets were retrieved using the
Faking it! tool4. The complete collection comprised 772 COVID-
related news claims and 161,838 relevant tweets shared during 2020.
From these claims, 26% and 74% were labeled as authentic and fake
content, respectively, according to the Politifact and Snopes label of
the associated news claim. Tweets’ labels were used to determine
whether users were fake news spreaders. To this end, we computed
a user score based on the proportion of shared tweets associated
with fake news. Then, users were deemed as spreaders if the propor-
tion of shared fake content was higher than a certain threshold. For
the purpose of the evaluation, we adopted a conservative definition
of spreaders, setting the threshold to 0.5.

Based on the retrieved tweets, we built both a tweet and user
graphs. In the tweet graph, nodes represent tweets and edges the
reply, quote and retweet relations, following the information flow.
In the user graph, nodes represent users, while edges were derived
from the tweet graph and the user mentions in tweets. Edges were
weighted according to the number of interactions between users
(e.g., the number of mentions between two users). Finally, to en-
sure that the user graph is not disconnected, we kept users (and
their tweets) belonging to the largest connected component of the
user graph that shared more than one tweet. In summary, we kept
112,433 tweets belonging to 24,430 users. On average, each user
shared 4.7 (± 15.78) tweets and established 4 (± 15) user relations5.

Baselines. The performance of the proposed model was compared
to several approaches. First, simple baselines consisting of tradi-
tionally used features6: tweet stats (e.g., the percentage of tweets
with url, mentions or hashtags, the percentage of tweets shared
during the night or the weekend, and the average tweet length, as

4Faking it!: https://github.com/knife982000/FakingIt
5The final retrieved set of tweet IDs (in accordance with Twitter TOS) and the resulting
graphs are available at: https://bit.ly/37Topnx.
6The different sets of features can be found in the companion repository.

https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://doi.org/10.5281/zenodo.4441377
https://github.com/knife982000/FakingIt
https://bit.ly/37Topnx
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defined by Ghanem et al. [4] and other approaches for fake news
detection [12]), user and tweet stats (e.g., follower/friend ratio,
follower count, description length, whether the user is verified, age
of the account, screenname length and digits in screenname, as
defined by Sansonetti et al. [20]), readability (metrics to estimate
the complexity of a text to determine the level of literacy needed to
understand it, as defined by Giachanou et al. [5] and Shrestha and
Spezzano [23]), LIWC (a set of LIWC psychologically-meaningful
linguistic categories associated to personal pronouns, personal
concerns, cognitive processes, informal processes and perceptual
processes, as defined by Giachanou et al. [5]), personality (the
scores for the Big 5 traits were computed following [15], as in [5]),
node2vec [6], and a content-based representation of users based
onGloVe [16] and BERT embeddings. We tested these baselines on
different classifiers (Decision Tree, Random Forest, K-nn and SVM)
and chose the configuration achieving the highest results. We also
considered the closely related works of (see Section 2 for more de-
tails): i) Sharma and Sharma [22] (demographic features were not
included), ii) Sansonetti et al. [20], iii) CheckerOrSpreader [5],
iv) Shrestha and Spezzano [23] and v) FacTweet [4].

When available, original implementations were used, and param-
eters were optimized according to the procedures described in the
original studies. For each baseline, we selected the configuration
achieving the highest results. Tweets were slightly pre-processed
by replacing URLs and removing symbols and numbers.

Implementation details. The baselines and the proposed model
were implemented in Python, with the support of sklearn, Tensor-
Flow and PyTorch. The optimizer was set to Adam with a learning
rate of 1𝑒 − 3, 𝛽1 = 0.1 and 𝛽2 = 0.999. Hyper-parameter optimiza-
tion was focused on the size of GCNs, the self-attention mechanism,
and the dense layers. The size of the user GCNs was set to 32 (we
evaluated 32, 64 and 100), the size of the tweet GCN was set to 100
(we evaluated 100 and 200), the size of the self-attention mechanism
was set to 15 (we evaluated 15 and 30), and the size of last two dense
layers was set to 70 (we evaluated 70 and 150). Before selecting the
weighted Hinge loss function, we also evaluated the performance
of unweighted Hinge and Cross-Entropy. For all the layers, we
evaluated both ReLU and linear activation functions. The learning
process was stopped once no loss changes were observed, reaching
convergence after 20 epochs7. The model was trained on an Asus
Scar 15 with a Ryzen 9 5900HX and an NVidia GeForce RTX 3080.
Training and evaluation for each epoch took approximately 1.40
minutes and 30 seconds, respectively.

Evaluation was performed in an offline setting based on a tem-
poral user split, which allows emulating a scenario in which the
model is trained with historical data and is used to predict current
or future behaviours. Users were sorted considering the date of
their first interaction, and then the first 70% users were selected
as the training set and the last 30% as the test set. All evaluations
were performed over the same data partitions. Performance was
evaluated based on binary (focusing on the spreader class) and
weighted precision and recall. Given the nature of the task, recall
might be more relevant than precision. Finally, we also considered
the AUC-ROC score.

7More details and implementation can be found at the companion repository.

5 EVALUATION
Table 1 presents the obtained results. For each metric, the best re-
sults are shown in bold, and the second-best are underlined. As
observed, user and tweet statistics achieved better results than alter-
natives based on content, implying that tweets’ statistics might be
more helpful in identifying fake news spreaders than the shared con-
tent. In addition, the embedding content representation achieved
similar results to the hand-crafted features. This situation seems to
confirm that fake content tends to show similar characteristics and
style to authentic content [24]. Similarly, the low results observed
for the embeddings representation could be related to the topically
focused nature of data, in which fake and authentic content will
be naturally related, and differences between them might be too
subtle for the embeddings to detect. On the other hand, network
topology, as characterized by node2vec improved content-based
representation, showing that despite being sparse, topology can be
a strong indicator of fake news spreaders [27].

State-of-the-art baselines showed similar precision to the sim-
ple baselines but lower recall. The best precision/recall balance
Was observed for Sansonetti et al. [20], confirming the tendency of
tweet and user stats to provide relevant information for spreader
detection. On the other hand, the worst results were achieved by
FacTweet, which relied on characterizing users by dividing their
timelines into small tweet chunks. In this case, it might be possible
that chunks do not convey enough information to adequately char-
acterize users. Despite the low precision/recall, it achieved higher
AUC-ROC than the simpler baselines, showing that even when
mistakenly predicting non-spreaders as spreaders, the confidence
on spreaders detection was higher than for the non-spreaders (i.e.,
they were ranked higher).

Our model achieved the highest results, with average differences
of 43% and 162%, and 50% and 54% for binary andweighted precision
and recall. Although some baselines achieved similar precision
results to our model, they achieved lower recall. In this sense, results
confirm the importance of combining the different information
sources for spreader detection. Nonetheless, an ablation study is
still needed to fully assess their contributions. The differences in
binary and weighted precision/recall are higher for the baselines
that for our model. This could imply that the non-spreader class has
a more significant impact on metrics for the baselines than for our
model. In other words, our model was able to predict both classes
with similar quality. Our model also outperformed all baselines
in terms of the Matthews coefficient [1], with differences up to
one order magnitude, confirming the capabilities of our model for
correctly classifying instances of both classes.

Finally, we also evaluated performance in a 10-fold stratified
cross-validation scenario. For most baselines, results showed similar
tendencies than for the temporal split. The only exceptions were the
feature sets based on tweet and user stats, CheckerOrSpreader and
Shrestha and Spezzano [23]. The tweet and user stats feature sets
achieved higher precision than our model, with differences up to a
9%. Nonetheless, they showed lower recall results with differences
up to 34%. On the other hand, while still achieving lower results
than our model, CheckerOrSpreader and Shrestha and Spezzano
[23] largely increased their recall, which might hint their sensitivity
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Binary (Spreader class) Weighted AUC-ROCPrecision Recall Precision Recall

our model 0.851 0.84 0.839 0.838 0.878

tweet stats 0.833 0.669 0.769 0.755 0.84
user stats & tweet stats 0.803 0.623 0.737 0.721 0.726

readability 0.573 0.448 0.542 0.534 0.539
LIWC 0.555 0.443 0.526 0.52 0.52

personality 0.537 0.413 0.511 0.504 0.509
node2vec 0.66 0.544 0.62 0.612 0.658
GloVe 0.539 0.436 0.512 0.507 0.51
BERT 0.534 0.411 0.508 0.501 0.506

Sharma and Sharma [22] 0.634 0.239 0.571 0.527 0.713
Sansonetti et al. [20] 0.467 0.642 0.397 0.426 0.688

CheckerOrSpreader [5] 0.809 0.119 0.662 0.521 0.544
Shrestha and Spezzano [23] 0.634 0.239 0.571 0.527 0.713

FacTweet [4] 0.436 0.177 0.524 0.561 0.507
Table 1: Best performance comparison for fake news spreaders detection

to class distribution. With only a few exceptions, differences were
statistically significant with an alpha of 0.01, favoring our model.

6 CONCLUSIONS
This work presented a model for identifying fake news spreaders in
social media by combining content and user features, the induced
propagation trees, and features learned from user interactions. A
preliminary evaluation showed the models’ potential for accurately
detecting fake news spreaders and the importance of combining the
different aspects of user representation to achieve a more effective
characterization of spreaders.

Several aspects could be tackled in future works. First, the prelim-
inary evaluation only considered a small and sparse data collection
with an unbalanced proportion of spreaders. Additional evaluations
should be performed over different collections of varying scale and
domains. Also, the model could be evaluated for other related tasks
such as the detection of rumour, hoaxes or conspiracy spreaders.
Second, perform an ablation study to assess the contribution (or
effects) of the different components, particularly, the relevance of
the hand-crafted features. Third, given the real-time nature of the
tackled problem, the model could be adapted to the early detection
of spreaders, and dynamic scenarios in which the user and tweet
graphs are updated with new elements and interactions. Fourth, the
definition of whether a user is a spreader relies on a threshold. In
this sense, the problem could be transformed into a regression prob-
lem in which we aim to estimate how likely a user is to be a spreader.
Finally, the model could be enriched to provide explanations and
thus help users understand the effect of their activities and increase
their decision awareness. Such explanations could also shed some
light on the motivational aspects of fake news spreading [8].

ETHICAL STATEMENT
Research is based on publicly available Twitter data initially col-
lected and tagged by third parties. No user personal information
was included in the analysis, and no user identity is being disclosed.
As per Twitter TOS, the shared data only includes user and tweet
IDs and aggregated content features.

As an end goal, the presented model aims to provide users with
tools to identify and quantify unwanted fake news spreaders in their
social circles to increase their decision awareness. Nonetheless, the
results of this study should not be used to publicly criticize users
sharing fake news. Finally, the study can suffer from bias stemming,
for example, from the data collection and tagging process. In this
sense, biases should be considered before applying any derived
result from this study in real-world settings.

REFERENCES
[1] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews

correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 1–13.

[2] Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. 2019. Racial
bias in hate speech and abusive language detection datasets. arXiv preprint
arXiv:1905.12516 (2019).

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[4] Bilal Ghanem, Simone Paolo Ponzetto, and Paolo Rosso. 2020. FacTweet: profiling
fake news twitter accounts. In International Conference on Statistical Language
and Speech Processing. Springer, 35–45.

[5] Anastasia Giachanou, Bilal Ghanem, Esteban A Ríssola, Paolo Rosso, Fabio
Crestani, and Daniel Oberski. 2022. The impact of psycholinguistic patterns
in discriminating between fake news spreaders and fact checkers. Data & Knowl-
edge Engineering 138 (2022), 101960.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[7] Bohan Jiang, Mansooreh Karami, Lu Cheng, Tyler Black, and Huan Liu. 2021.
Mechanisms and Attributes of Echo Chambers in Social Media. arXiv preprint
arXiv:2106.05401 (2021).

[8] Mansooreh Karami, Tahora H Nazer, and Huan Liu. 2021. Profiling Fake News
Spreaders on Social Media through Psychological and Motivational Factors. In
Proceedings of the 32nd ACM Conference on Hypertext and Social Media. 225–230.

[9] Jisu Kim, Jihwan Aum, SangEun Lee, Yeonju Jang, Eunil Park, and Daejin Choi.
2021. FibVID: Comprehensive fake news diffusion dataset during the COVID-19
period. Telematics and Informatics 64 (2021), 101688. https://doi.org/10.1016/j.
tele.2021.101688

[10] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

[11] Yang Liu and Yi-Fang Wu. 2018. Early detection of fake news on social me-
dia through propagation path classification with recurrent and convolutional
networks. In Proceedings of the AAAI conference on artificial intelligence, Vol. 32.

https://doi.org/10.1016/j.tele.2021.101688
https://doi.org/10.1016/j.tele.2021.101688


UMAP ’22 Adjunct, July 4–7, 2022, Barcelona, Spain Antonela Tommasel, Juan Manuel Rodriguez, and Filippo Menczer

[12] Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and Kam-Fai Wong. 2015. Detect
rumors using time series of social context information on microblogging websites.
In Proceedings of the 24th ACM international on conference on information and
knowledge management. 1751–1754.

[13] Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect Rumors in Microblog Posts
Using Propagation Structure via Kernel Learning. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Vancouver, Canada, 708–717.
https://doi.org/10.18653/v1/P17-1066

[14] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M
Bronstein. 2019. Fake news detection on social media using geometric deep
learning. arXiv preprint arXiv:1902.06673 (2019).

[15] Yair Neuman and Yochai Cohen. 2014. A vectorial semantics approach to person-
ality assessment. Scientific reports 4, 1 (2014), 1–6.

[16] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[17] Francesco Pierri, Carlo Piccardi, and Stefano Ceri. 2020. A multi-layer approach
to disinformation detection in US and Italian news spreading on Twitter. EPJ
Data Science 9, 1 (2020), 35.

[18] Bhavtosh Rath, Aadesh Salecha, and Jaideep Srivastava. 2020. Detecting fake
news spreaders in social networks using inductive representation learning. In
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). IEEE, 182–189.

[19] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and
Alessandro Verri. 2004. Are loss functions all the same? Neural computation 16,
5 (2004), 1063–1076.

[20] Giuseppe Sansonetti, Fabio Gasparetti, Giuseppe D’aniello, and Alessandro Mi-
carelli. 2020. Unreliable users detection in social media: Deep learning techniques
for automatic detection. IEEE Access 8 (2020), 213154–213167.

[21] Karishma Sharma, Feng Qian, He Jiang, Natali Ruchansky, Ming Zhang, and
Yan Liu. 2019. Combating fake news: A survey on identification and mitigation
techniques. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 3
(2019), 1–42.

[22] Shakshi Sharma and Rajesh Sharma. 2021. Identifying possible rumor spreaders
on twitter: A weak supervised learning approach. In 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[23] Anu Shrestha and Francesca Spezzano. 2021. Characterizing and predicting fake
news spreaders in social networks. International Journal of Data Science and
Analytics (2021), 1–14.

[24] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news
detection on social media: A data mining perspective. ACM SIGKDD explorations
newsletter 19, 1 (2017), 22–36.

[25] Kai Shu, Suhang Wang, and Huan Liu. 2019. Beyond news contents: The role
of social context for fake news detection. In Proceedings of the twelfth ACM
international conference on web search and data mining. 312–320.

[26] Jiliang Tang, Yi Chang, and Huan Liu. 2014. Mining social media with social
theories: a survey. ACM Sigkdd Explorations Newsletter 15, 2 (2014), 20–29.

[27] Bao Tran Truong, Oliver Melbourne Allen, and Filippo Menczer. 2022. News
Sharing Networks Expose Information Polluters on Social Media. arXiv preprint
arXiv:2202.00094 (2022).

[28] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2020. Why Gradient
Clipping Accelerates Training: A Theoretical Justification for Adaptivity. In
International Conference on Learning Representations. https://openreview.net/
forum?id=BJgnXpVYwS

https://doi.org/10.18653/v1/P17-1066
https://openreview.net/forum?id=BJgnXpVYwS
https://openreview.net/forum?id=BJgnXpVYwS

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling fake news spreaders detection
	4 Experimental settings
	5 Evaluation
	6 Conclusions
	References

